Fred Leighton Memorial Workshop on Mining Induced Seismicity August 30, 1987

1989 ◽  
pp. 285-293
Author(s):  
R. Paul Young
Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6675
Author(s):  
Dariusz Chlebowski ◽  
Zbigniew Burtan

Mining-induced seismicity in the area of development works and proper mining operations is one of the major determinants of the rockburst hazard level in underground mines. Rockburst hazard assessment in Polish collieries is performed by a variety of mining and geophysical methods, including seismic and seismoacoustic techniques, borehole surveys, small diameter drilling, rock strata profiling and analyses of geomechanical properties of rocks, geological structure and geological mining conditions. In the case of zones particularly exposed to potential hazards, it is recommended that analytical or numerical forecasts of the state of stress in the vicinity of workings should be used already at the stage of planning of mining operations. This study summarises the comparative analysis of seismic test data and analytical forecasts of the state of stress in five selected headings in one of the burst-prone collieries within the Upper Silesia Coal Basin in Poland (USCB). As regards the seismic data, duly defined quantitative indicators and energy criteria of the registered seismic activity are recalled in the assessment of rockburst hazard level during the roadheading operations. Analytical simulations utilise a developed geomechanical model and stress–strain relationships stemming from the principles of elastic media mechanics. From the standpoint of mining engineering practice, interpretation of results obtained by the two methods reveals how effective analytical models will be in prognosticating or verification of rockburst hazard conditions.


2020 ◽  
Vol 10 (19) ◽  
pp. 6763
Author(s):  
Pingan Peng ◽  
Yuanjian Jiang ◽  
Liguan Wang ◽  
Zhengxiang He ◽  
Siyu Tu

The accurate localization of mining-induced seismicity is crucial to underground mines. However, the constant velocity model is used by traditional location methods without considering the great difference in wave velocity between rock mass and underground voids. In this paper, to improve the microseismicity location accuracy in mines, we present a fast ray-tracing method to calculate the ray path and travel time from source to receiver considering underground voids. First, we divide the microseismic monitoring area into two categories of mediums—voids and non-voids—using a flexible triangular patch to model the surface model of voids, which can accurately describe any complicated three-dimensional (3D) shape. Second, the nodes are divided into two categories. The first category of the nodes is the vertex of the model, and the second category of the nodes is arranged at a certain step length on each edge of the 3D surface model to improve the accuracy of ray tracing. Finally, the set of adjacent nodes of each node is calculated, and then we obtain the shortest travel time from the source to the receiver based on the Dijkstra algorithm. The performance of the proposed method is tested by numerical simulation. Results show that the proposed method is faster and more accurate than the traditional ray-tracing methods. Besides, the proposed ray-tracing method is applied to the microseismic source localization in the Huangtupo Copper and Zinc Mine. The location accuracy is significantly improved compared with the traditional method using the constant velocity model and the FMM-based location method.


2013 ◽  
Vol 195 (2) ◽  
pp. 1267-1281 ◽  
Author(s):  
Ali Tolga Sen ◽  
Simone Cesca ◽  
Monika Bischoff ◽  
Thomas Meier ◽  
Torsten Dahm

Sign in / Sign up

Export Citation Format

Share Document