Cauchy-Riemann Operators, Self-Duality, and the Spectral Flow

Author(s):  
Stamatis Dostoglou ◽  
Dietmar A. Salamon
Author(s):  
Stamatis Dostoglou ◽  
Dietmar A. Salamon

2018 ◽  
Vol 9 (3) ◽  
pp. 73-84
Author(s):  
N. Taghizadeh ◽  
◽  
V. Soltani Mohammadi ◽  

1992 ◽  
Vol 07 (23) ◽  
pp. 2077-2085 ◽  
Author(s):  
A. D. POPOV

The anti-self-duality equations for gauge fields in d = 4 and a generalization of these equations to dimension d = 4n are considered. For gauge fields with values in an arbitrary semisimple Lie algebra [Formula: see text] we introduce the ansatz which reduces the anti-self-duality equations in the Euclidean space ℝ4n to a system of equations breaking up into the well known Nahm's equations and some linear equations for scalar field φ.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Javier Gutiérrez García ◽  
Ulrich Höhle ◽  
Tomasz Kubiak

2021 ◽  
Vol 211 ◽  
pp. 104585
Author(s):  
Zakari Midjiyawa ◽  
Etienne Cheynet ◽  
Joachim Reuder ◽  
Hálfdán Ágústsson ◽  
Trond Kvamsdal

2021 ◽  
Vol 183 (3) ◽  
Author(s):  
Mario Ayala ◽  
Gioia Carinci ◽  
Frank Redig

AbstractWe study the symmetric inclusion process (SIP) in the condensation regime. We obtain an explicit scaling for the variance of the density field in this regime, when initially started from a homogeneous product measure. This provides relevant new information on the coarsening dynamics of condensing interacting particle systems on the infinite lattice. We obtain our result by proving convergence to sticky Brownian motion for the difference of positions of two SIP particles in the sense of Mosco convergence of Dirichlet forms. Our approach implies the convergence of the probabilities of two SIP particles to be together at time t. This, combined with self-duality, allows us to obtain the explicit scaling for the variance of the fluctuation field.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Guido Festuccia ◽  
Anastasios Gorantis ◽  
Antonio Pittelli ◽  
Konstantina Polydorou ◽  
Lorenzo Ruggeri

Abstract We construct a large class of gauge theories with extended supersymmetry on four-dimensional manifolds with a Killing vector field and isolated fixed points. We extend previous results limited to super Yang-Mills theory to general $$ \mathcal{N} $$ N = 2 gauge theories including hypermultiplets. We present a general framework encompassing equivariant Donaldson-Witten theory and Pestun’s theory on S4 as two particular cases. This is achieved by expressing fields in cohomological variables, whose features are dictated by supersymmetry and require a generalized notion of self-duality for two-forms and of chirality for spinors. Finally, we implement localization techniques to compute the exact partition function of the cohomological theories we built up and write the explicit result for manifolds with diverse topologies.


Sign in / Sign up

Export Citation Format

Share Document