Modeling of Deep Reactive Ion Etching in a Three-Dimensional Simulation Environment

Author(s):  
Andreas Hössinger ◽  
Zoran Djurić ◽  
Artem Babayan
Author(s):  
Ronald Hon ◽  
Shawn X. D. Zhang ◽  
S. W. Ricky Lee

The focus of this study is on the fabrication of through silicon vias (TSV) for three dimensional packaging. According to IPC-6016, the definition of microvias is a hole with a diameter of less than or equal to 150 μm. In order to meet this requirement, laser drilling and deep reactive ion etching (but not wet etching) are used to make the microvias. Comparisons between these two different methods are carried out in terms of wall straightness, smoothness, smallest via produced and time needed for fabrication. In addition, discussion on wafer thinning for making through silicon microvias is given as well.


2011 ◽  
Vol 1346 ◽  
Author(s):  
Z. Sanaee ◽  
S. Mehrvarz ◽  
M. Mehran ◽  
M. Abdolahad ◽  
M. Sohrabi ◽  
...  

ABSTRACTMicroneedles have applications in drug delivery and biotechnology. We report a novel needle-like hollow cylindrical structure as a base for the growth of carbon nanotubes (CNT) to form a cage-like structure. The formation of hollow microneedle structures is feasible on Si-membranes using proper patterning of the masking layer and combined by a deep reactive ion etching. The formation of highly featured structures at micro and nanometric scale is reported. By controlling the etching parameter one is able to achieve three-dimensional as well as highly vertical structures on silicon substrates. The growth of carbon nanotubes on such structures allows the realization of cage-like carbon-based features which could be suitable for gas and liquid transport.


2011 ◽  
Vol 21 (10) ◽  
pp. 105001
Author(s):  
Ahmet Erten ◽  
Milan Makale ◽  
Xuekun Lu ◽  
Bernd Fruhberger ◽  
Santosh Kesari ◽  
...  

2017 ◽  
Vol 9 (27) ◽  
pp. 23263-23263
Author(s):  
Bryan W. K. Woo ◽  
Shannon C. Gott ◽  
Ryan A. Peck ◽  
Dong Yan ◽  
Mathias W. Rommelfanger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document