Adaptive Approach for Enhancement the Visual Quality of Low-Contrast Medical Images

Author(s):  
Vladimir Todorov ◽  
Roumiana Kountcheva
2012 ◽  
Vol 2 (3) ◽  
pp. 131-133
Author(s):  
Saruchi Garg ◽  
Madan Lal

The main purpose of image enhancement is to bring out detail that is hidden in an image or to increase contrast in a low contrast image. Image enhancement techniques provide a multitude of choices for improving the visual quality of images. Appropriate choice of such techniques is greatly influenced by the imaging modality, task at hand and viewing conditions. This paper analyses the performance of some of existing image enhancement algorithms. The performance of algorithms are evaluated  both qualitatively and quantitatively.


2015 ◽  
Vol 8 (2) ◽  
pp. 141-144
Author(s):  
Choong-ho Shin ◽  
Chai-yeoung Jung

Author(s):  
Vazhora Malayil Manikandan ◽  
Nelapati Lava Prasad ◽  
Masilamani Vedhanayagam

Background: Medical image authentication is an important area which attempts to establish ownership authentication and data authentication of medical images. Aims: In this paper, we propose a new reversible watermarking scheme based on a novel half difference expansion technique for medical image forensics. Methods: Conventional difference expansion based reversible watermarking scheme generates watermarked images with less visual quality, and the embedding rate was considerably less due to the high probability of overflow or underflow. In the proposed scheme, the quality of the watermarked image has been improved by modifying the traditional difference expansion based watermarking scheme, half of the difference between two pixels will be expanded during watermarking. The modification of pixels during watermarking is limited by expanding half of the pixel difference, which helps to obtain watermarked images with better visual quality and improved embedding rate due to less chance of overflow or underflow during watermarking. We also propose a tamper detection localization process to detect the tampered regions from the watermarked image. Results: Experimental study of the proposed scheme on the standard medical images from Osrix medical image data set shows that the proposed watermarking scheme outperforms the existing schemes in terms of visual quality of the watermarked image and embedding rate. Conclusion: The overhead related to location map and parity information need to be addressed in future works to improve the proposed scheme.


Medical Image Enhancement Low contrast is the active study area that the obtained pictures suffer from noise and low contrast. Age of capturing equipment, bad illumination circumstances are the low contrast medical images. Thus, techniques of contrast improved performance are used before being used to enhance the contrast of medical images. Within a tiny range of pixel concentrations, contrast improvement algorithms enhance low contrast image. Low contrast image enhancement is accomplished using Equalization of Contrast Limited Adaptive Histogram. CLAHE image enhancement is used to enhance the quality of medical images with low contrast. DWT image, sub-bands such as LL, LH, HL, HH are decomposed. 2D Adaptive fusion image on discrete wavelet transformation is used to fuse the main and CLAHE output images. The efficiency of the output is calculated using merged image entropy and PSNR. It is discovered that the visual content of low contrast medical pictures is enhanced effectively on the basis of 2D DWT and adaptive Fusion.


Author(s):  
Russell L. Steere ◽  
Eric F. Erbe ◽  
J. Michael Moseley

We have designed and built an electronic device which compares the resistance of a defined area of vacuum evaporated material with a variable resistor. When the two resistances are matched, the device automatically disconnects the primary side of the substrate transformer and stops further evaporation.This approach to controlled evaporation in conjunction with the modified guns and evaporation source permits reliably reproducible multiple Pt shadow films from a single Pt wrapped carbon point source. The reproducibility from consecutive C point sources is also reliable. Furthermore, the device we have developed permits us to select a predetermined resistance so that low contrast high-resolution shadows, heavy high contrast shadows, or any grade in between can be selected at will. The reproducibility and quality of results are demonstrated in Figures 1-4 which represent evaporations at various settings of the variable resistor.


Author(s):  
Junyoung Yun ◽  
Hong-Chang Shin ◽  
Gwangsoon Lee ◽  
Jong-Il Park

Author(s):  
Mingliang Xu ◽  
Qingfeng Li ◽  
Jianwei Niu ◽  
Hao Su ◽  
Xiting Liu ◽  
...  

Quick response (QR) codes are usually scanned in different environments, so they must be robust to variations in illumination, scale, coverage, and camera angles. Aesthetic QR codes improve the visual quality, but subtle changes in their appearance may cause scanning failure. In this article, a new method to generate scanning-robust aesthetic QR codes is proposed, which is based on a module-based scanning probability estimation model that can effectively balance the tradeoff between visual quality and scanning robustness. Our method locally adjusts the luminance of each module by estimating the probability of successful sampling. The approach adopts the hierarchical, coarse-to-fine strategy to enhance the visual quality of aesthetic QR codes, which sequentially generate the following three codes: a binary aesthetic QR code, a grayscale aesthetic QR code, and the final color aesthetic QR code. Our approach also can be used to create QR codes with different visual styles by adjusting some initialization parameters. User surveys and decoding experiments were adopted for evaluating our method compared with state-of-the-art algorithms, which indicates that the proposed approach has excellent performance in terms of both visual quality and scanning robustness.


2021 ◽  
pp. 112067212110021
Author(s):  
Javier Ruiz-Alcocer ◽  
Irene Martínez-Alberquilla ◽  
Amalia Lorente-Velázquez ◽  
José F Alfonso ◽  
David Madrid-Costa

Purpose: To objectively analyze the optical quality of the FineVision Toric intraocular lens (IOL) with two cylinder powers when different combinations of rotations and residual refractive errors are induced. Methods: This study assessed the FineVision Toric IOL with two different cylinder powers: 1.5 and 3.0 diopters (D). Three different rotation positions were considered: centered, 5° and 10° rotated. An optical bench (PMTF) was used for optical analysis. The optical quality of the IOLs was calculated by the modulation transfer function (MTF) at five different focal points (0.0, 0.25, 0.50, 0.75, and 1.00 D). Results: The MTF averaged value of the reference situation was 38.58 and 37.74 for 1.5 and 3.0 D of cylinder, respectively. For the 1.5 D cylinder, the combination of 5° of rotation with a defocus of 0.25, 0.50, 0.75, and 1.0 D induced a decrease on the MTF of 12.39, 19.94, 23.43, 24.23 units, respectively. When induced rotation was 10°, the MTF decrease was 17.26, 23.40, 24.33, 24.48 units, respectively. For the 3.0 D cylinder, the combination of 5° with 0.25, 0.50, 0.75, and 1.0 D of defocus, induced a decrease on the MTF of 12.51, 18.97, 22.36, 22.48 units, respectively. When induced rotation was 10°, the MTF decrease was: 18.42, 21.57, 23.08, and 23.61 units, respectively. Conclusion: For both FineVision Toric IOLs there is a certain optical tolerance to rotations up to 5° or residual refractive errors up to 0.25 D. Situations over these limits and their combination would affect the visual quality of patients implanted with these trifocal toric IOLs.


1967 ◽  
Vol 17 (7) ◽  
pp. 467-469 ◽  
Author(s):  
Norman C. Ahlquist ◽  
Robert J. Charlson

Sign in / Sign up

Export Citation Format

Share Document