A Mixed RANS/LES Model Applied to the Channel Flow

Author(s):  
Antonella Abbà ◽  
Massimo Germano
Keyword(s):  
Author(s):  
Rey DeLeon ◽  
Inanc Senocak

The log-layer mismatch arises when a Reynolds-averaged Navier-Stokes (RANS) model is blended with a large-eddy simulation (LES) model in a hybrid fashion. Numerous researchers have tackled this problem by simulating a turbulent channel flow. We show that the log-layer mismatch in hybrid RANS-LES can be reduced substantially by splitting the mean pressure gradient term in the wall-normal direction in a manner that keeps the mass flow rate constant. Additionally, an analysis of the wall-normal variation of the friction velocity shows a constant value is recovered in the resolved LES region different than the value at the wall. Second-order turbulence statistics agree very well with direct numerical simulation (DNS) benchmarks when scaled with the friction velocity extracted from the resolved LES region. In light of our findings, we suggest that the current convention to drive a turbulent periodic channel flow with a uniform mean pressure gradient be revisited in testing eddy-viscosity-based hybrid RANS-LES models as it appears to be the culprit behind the log-layer mismatch.


Author(s):  
Al Hassan Afailal ◽  
Jérémy Galpin ◽  
Anthony Velghe ◽  
Rémi Manceau

CFD simulation tools are increasingly used nowadays to design more fuel-efficient and clean Internal Combustion Engines (ICE). Within this framework, there is a need to benefit from a turbulence model which offers the best compromise between prediction capabilities and computational cost. The Hybrid Temporal LES (HTLES) approach is here retained within the perspective of an application to ICE configurations. HTLES is a hybrid Reynolds-Averaged Navier Stokes/Large Eddy Simulation (RANS/LES) model based on a solid theoretical framework using temporal filtering. The concept is to model the near-wall region in RANS and to solve the turbulent structures in the core region if the temporal and spatial resolutions are fine enough. In this study, a dedicated sub-model called Elliptic Shielding (ES) is added to HTLES in order to ensure RANS in the near-wall region, regardless of the mesh resolution. A modification of the computation of the total kinetic energy and the dissipation rate was introduced as first adaptions of HTLES towards non-stationary ICE configurations. HTLES is a recent approach, which has not been validated in a wide range of applications. The present study intends to further validate HTLES implemented in CONVERGE code by examining three stationary test cases. The first validation consists of the periodic hill case, which is a standard benchmark case to assess hybrid turbulence models. Then, in order to come closer to real ICE simulations, i.e., with larger Reynolds numbers and coarser near-wall resolutions, the method is validated in the case of a channel flow using wall functions and in the steady flow rig case consisting in an open valve at a fixed lift. HTLES results are compared to RANS k-ω SST and wall-modeled LES σ simulations performed with the same grid and the same temporal resolution. Unlike RANS, satisfactory reproduction of the flow recirculation has been observed with HTLES in the case of periodic hills. The channel flow configuration has underlined the capability of HTLES to predict the wall friction properly. The steady flow rig shows that HTLES combines advantages of RANS and LES in one simulation. On the one hand, HTLES yields mean and rms velocities as accurate as LES since the scale-resolving simulation is triggered in the core region. On the other hand, hybrid RANS/LES at the wall provides accurate pressure drop in contrast with LES performed on the same mesh. Future work will be dedicated to the extension of HTLES to non-stationary flows with moving walls in order to be able to tackle realistic ICE flow configurations.


Author(s):  
Tausif Jamal ◽  
Huiyu Wang ◽  
D. Keith Walters

Simulation of turbulent boundary layers for flows characterized by unsteady driving conditions is important for solving complicated engineering problems such as combustion, blood flow in stenosed arteries, and flow over immersed structures. These flows are often dominated by complex vortical structures, regions of varying turbulence intensities, and fluctuating pressure fields. Pulsating channel flow is one such case that presents a unique set of challenges for newly developed and existing turbulence models used in computational fluid dynamics (CFD) solvers. In the present study, performance of the dynamic hybrid RANS-LES model (DHRL) with exponential time averaging (ETA) is evaluated against Monotonically Integrated Large Eddy Simulation (MILES) and a previously documented LES study for a fully developed channel flow with a time-periodic driving pressure gradient. Results indicate that MILES over predicts mean streamwise velocity for all forcing frequencies while the DHRL model with ETA provides a method for improved results, especially for the lower frequencies. It is concluded that a hybrid RANS-LES model with ETA is a useful alternative to simulate unsteady non-stationary flows but further work is needed to determine the appropriate filter width for ETA to significantly improve the predictive capabilities of the DHRL model.


2011 ◽  
Author(s):  
N. Hu ◽  
H. Liu ◽  
Z.S. She ◽  
F. Hussain ◽  
Jiachun Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document