A Malliavin Calculus Approach to Weak Convergence

Author(s):  
Raphael Kruse
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ta Cong Son ◽  
Nguyen Tien Dung ◽  
Nguyen Van Tan ◽  
Tran Manh Cuong ◽  
Hoang Thi Phuong Thao ◽  
...  

<p style='text-indent:20px;'>In this paper, we consider a fundamental class of stochastic differential equations with time delays. Our aim is to investigate the weak convergence with respect to delay parameter of the solutions. Based on the techniques of Malliavin calculus, we obtain an explicit estimate for the rate of convergence. An application to the Carathéodory approximation scheme of stochastic differential equations is provided as well.</p>


Author(s):  
Salwa Salman Abed ◽  
Karrar Emad Abdul Sada

     In this paper,there are   new considerations about the dual of a modular spaces and weak convergence. Two common fixed point theorems for a -non-expansive mapping defined on a star-shaped weakly compact subset are proved,  Here the conditions of affineness, demi-closedness and Opial's property play an active role in the proving our results.  


2021 ◽  
Vol 58 (2) ◽  
pp. 372-393
Author(s):  
H. M. Jansen

AbstractOur aim is to find sufficient conditions for weak convergence of stochastic integrals with respect to the state occupation measure of a Markov chain. First, we study properties of the state indicator function and the state occupation measure of a Markov chain. In particular, we establish weak convergence of the state occupation measure under a scaling of the generator matrix. Then, relying on the connection between the state occupation measure and the Dynkin martingale, we provide sufficient conditions for weak convergence of stochastic integrals with respect to the state occupation measure. We apply our results to derive diffusion limits for the Markov-modulated Erlang loss model and the regime-switching Cox–Ingersoll–Ross process.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 462
Author(s):  
Apichit Buakird ◽  
Nimit Nimana ◽  
Narin Petrot

We propose a modified extragradient method for solving the variational inequality problem in a Hilbert space. The method is a combination of the well-known subgradient extragradient with the Mann’s mean value method in which the updated iterate is picked in the convex hull of all previous iterates. We show weak convergence of the mean value iterate to a solution of the variational inequality problem, provided that a condition on the corresponding averaging matrix is fulfilled. Some numerical experiments are given to show the effectiveness of the obtained theoretical result.


2019 ◽  
Vol 20 (03) ◽  
pp. 2050015 ◽  
Author(s):  
Hua Zhang

In this paper, we prove a moderate deviation principle for the multivalued stochastic differential equations whose proof are based on recently well-developed weak convergence approach. As an application, we obtain the moderate deviation principle for reflected Brownian motion.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 994
Author(s):  
Elisa Alòs ◽  
Jorge A. León

Here, we review some results of fractional volatility models, where the volatility is driven by fractional Brownian motion (fBm). In these models, the future average volatility is not a process adapted to the underlying filtration, and fBm is not a semimartingale in general. So, we cannot use the classical Itô’s calculus to explain how the memory properties of fBm allow us to describe some empirical findings of the implied volatility surface through Hull and White type formulas. Thus, Malliavin calculus provides a natural approach to deal with the implied volatility without assuming any particular structure of the volatility. The aim of this paper is to provides the basic tools of Malliavin calculus for the study of fractional volatility models. That is, we explain how the long and short memory of fBm improves the description of the implied volatility. In particular, we consider in detail a model that combines the long and short memory properties of fBm as an example of the approach introduced in this paper. The theoretical results are tested with numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document