Microstrip Antenna Design by Using Electromagnetic Bandgap Material

Author(s):  
Kumud Ranjan Jha ◽  
Ghanshyam Singh
2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Afaz Uddin Ahmed ◽  
M. T. Islam ◽  
Rezaul Azim ◽  
Mahamod Ismail ◽  
Mohd Fais Mansor

A mircostrip antenna is designed for multielement antenna coverage optimization in femtocell network. Interference is the foremost concern for the cellular operator in vast commercial deployments of femtocell. Many techniques in physical, data link and network-layer are analysed and developed to settle down the interference issues. A multielement technique with self-configuration features is analyzed here for coverage optimization of femtocell. It also focuses on the execution of microstrip antenna for multielement configuration. The antenna is designed for LTE Band 7 by using standard FR4 dielectric substrate. The performance of the proposed antenna in the femtocell application is discussed along with results.


Author(s):  
Petrus Kerowe Goran ◽  
Eka Setia Nugraha

Wireless Fidelity (WiFi) devices are often used to access the internet network, both for working and in information searching. Accessing the internet can be administered anywhere provided that the area is within the WiFi devices range. A WiFi device uses 2.4 GHz and 5 GHz operating frequencies. There were several methods employed in the previous studies so that an antenna design could work in two different frequencies, i.e., winding bowtie method, Sierpinski method, and double-circular method. This paper employed a simple method, the slit method. The objective of this paper is to discover a simple antenna model that works on 2.4 GHz and 5 GHz frequencies. This paper employed a square patch microstrip antenna with a slit method. The dimensions of the designed square patch microstrip antenna were 42.03 mm × 27.13 mm × 0.035 mm. The antenna worked at 2.4 GHz and 5 GHz frequencies. The obtained simulation results after the optimization showed that the square patch microstrip antenna using the slit method acquired a value of S11 (return loss) of -10.15 dB at a frequency of 2.4 GHz and -37.315 dB at a frequency of 5 GHz.


Sign in / Sign up

Export Citation Format

Share Document