Forest Soil and Climate Change

Forest Soils ◽  
2013 ◽  
pp. 173-182
Author(s):  
Khan Towhid Osman
Keyword(s):  
2021 ◽  
Author(s):  
Carl-Fredrik Johannesson ◽  
Klaus Steenberg Larsen ◽  
Brunon Malicki ◽  
Jenni Nordén

<p>Boreal forests are among the most carbon (C) rich forest types in the world and store up to 80% of its total C in the soil. Forest soil C development under climate change has received increased scientific attention yet large uncertainties remain, not least in terms of magnitude and direction of soil C responses. As with climate change, large uncertainties remain in terms of the effects of forest management on soil C sequestration and storage. Nonetheless, it is clear that forest management measures can have far reaching effects on ecosystem functioning and soil conditions. For example, clear cutting is a widely undertaken felling method in Scandinavia which profoundly affects the forest ecosystem and its functioning, including the soil. Nitrogen (N) fertilization is another common practice in Scandinavia which, despite uncertainties regarding effects on soil C dynamics, is being promoted as a climate change mitigation tool. A more novel practice of biochar addition to soils has been shown to have positive effects on soil conditions, including soil C storage, but studies on biochar in the context of forests are few.</p><p>In the face of climate change, the ForBioFunCtioN project is dedicated to investigating the response of boreal forest soil CO<sub>2</sub> and CH<sub>4</sub> fluxes to experimentally increased temperatures and increased precipitation – climatic changes in line with projections over Norway – within a forest management context. The experiment is set in a Norwegian spruce-dominated bilberry chronosequence, including a clear-cut site, a middle-aged thinned stand, a mature stand and an old unmanaged stand. Warming, simulated increased precipitation, N fertilizer and biochar additions will be applied on experimental plots in an additive manner that allows for disentangling the effects of individual parameters from interaction effects. Flux measurements will be undertaken at high temporal resolution using the state-of-the-art LI-7810 Trace Gas Analyzer (©LI-COR Biosciences). The presentation will show the experimental setup and first measurements from the large-scale experiment.</p>


2006 ◽  
Vol 86 (Special Issue) ◽  
pp. 171-185 ◽  
Author(s):  
Cindy Shaw ◽  
Oleg Chertov ◽  
Alexander Komarov ◽  
Jagtar Bhatti ◽  
Marina Nadporozhskaya ◽  
...  

Sustainability of forest ecosystems and climate change are two critical issues for boreal forest ecosystems in Canada that require an understanding of the links and balance between productivity, soil processes and their interaction with natural and anth ropogenic disturbances. Forest ecosystem models can be used to understand and predict boreal forest ecosystem dynamics. EFIMOD 2 is an individual tree model of the forest-soil ecosystem capable of modelling nitrogen feedback to productivity in response to changes in soil moisture and temperature. It has been successfully applied in Europe, but has not been calibrated for any forest ecosystem in Canada. The objective of this study was to parameterize and validate EFIMOD 2 for jack pine in Canada. Simulated and measured results agreed for changes in tree biomass carbon and soil carbon and nitrogen with increasing stand age and across a climatic gradient from the southern to northern limits of the boreal forest. Preliminary results from scenario testing indicate that EFIMOD 2 can be successfully applied to predict the impacts of forest management practices and climate change in the absence of natural disturbances on jack pine in the boreal forest of Canada. Model development is underway to represent the effects of natural disturbances. Key words: EFIMOD 2, forest soil, carbon, nitrogen, model, jack pine


2010 ◽  
Vol 45 (1) ◽  
pp. 26-38 ◽  
Author(s):  
Paul T. Rygiewicz ◽  
Vicente J. Monleon ◽  
Elaine R. Ingham ◽  
Kendall J. Martin ◽  
Mark G. Johnson

Author(s):  
M.V. Marek ◽  
I. Marková ◽  
M. Pavelka ◽  
K. Havránková ◽  
J. Macků ◽  
...  

2008 ◽  
Vol 14 (9) ◽  
pp. 2064-2080 ◽  
Author(s):  
CRAIG RASMUSSEN ◽  
RANDAL J. SOUTHARD ◽  
WILLIAM R. HORWATH

Sign in / Sign up

Export Citation Format

Share Document