Image Analysis for Crack Detection in Bone Cement

Author(s):  
Carlos Briceño ◽  
Jorge Rivera-Rovelo ◽  
Narciso Acuña
Author(s):  
J. Y. Rau ◽  
K. W. Hsiao ◽  
J. P. Jhan ◽  
S. H. Wang ◽  
W. C. Fang ◽  
...  

Bridge is an important infrastructure for human life. Thus, the bridge safety monitoring and maintaining is an important issue to the government. Conventionally, bridge inspection were conducted by human in-situ visual examination. This procedure sometimes require under bridge inspection vehicle or climbing under the bridge personally. Thus, its cost and risk is high as well as labor intensive and time consuming. Particularly, its documentation procedure is subjective without 3D spatial information. In order cope with these challenges, this paper propose the use of a multi-rotary UAV that equipped with a SONY A7r2 high resolution digital camera, 50 mm fixed focus length lens, 135 degrees up-down rotating gimbal. The target bridge contains three spans with a total of 60 meters long, 20 meters width and 8 meters height above the water level. In the end, we took about 10,000 images, but some of them were acquired by hand held method taken on the ground using a pole with 2–8 meters long. Those images were processed by Agisoft PhotoscanPro to obtain exterior and interior orientation parameters. A local coordinate system was defined by using 12 ground control points measured by a total station. After triangulation and camera self-calibration, the RMS of control points is less than 3 cm. A 3D CAD model that describe the bridge surface geometry was manually measured by PhotoscanPro. They were composed of planar polygons and will be used for searching related UAV images. Additionally, a photorealistic 3D model can be produced for 3D visualization. In order to detect cracks on the bridge surface, we utilize object-based image analysis (OBIA) technique to segment the image into objects. Later, we derive several object features, such as density, area/bounding box ratio, length/width ratio, length, etc. Then, we can setup a classification rule set to distinguish cracks. Further, we apply semi-global-matching (SGM) to obtain 3D crack information and based on image scale we can calculate the width of a crack object. For spalling volume calculation, we also apply SGM to obtain dense surface geometry. Assuming the background is a planar surface, we can fit a planar function and convert the surface geometry into a DSM. Thus, for spalling area its height will be lower than the plane and its value will be negative. We can thus apply several image processing technique to segment the spalling area and calculate the spalling volume as well. For bridge inspection and UAV image management within a laboratory, we develop a graphic user interface. The major functions include crack auto-detection using OBIA, crack editing, i.e. delete and add cracks, crack attributing, 3D crack visualization, spalling area/volume calculation, bridge defects documentation, etc.


Data ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 28 ◽  
Author(s):  
Kasthurirangan Gopalakrishnan

Deep learning, more specifically deep convolutional neural networks, is fast becoming a popular choice for computer vision-based automated pavement distress detection. While pavement image analysis has been extensively researched over the past three decades or so, recent ground-breaking achievements of deep learning algorithms in the areas of machine translation, speech recognition, and computer vision has sparked interest in the application of deep learning to automated detection of distresses in pavement images. This paper provides a narrative review of recently published studies in this field, highlighting the current achievements and challenges. A comparison of the deep learning software frameworks, network architecture, hyper-parameters employed by each study, and crack detection performance is provided, which is expected to provide a good foundation for driving further research on this important topic in the context of smart pavement or asset management systems. The review concludes with potential avenues for future research; especially in the application of deep learning to not only detect, but also characterize the type, extent, and severity of distresses from 2D and 3D pavement images.


Author(s):  
Ryan DeVine ◽  
Yu Qian ◽  
Yi Wang ◽  
Shaofeng Wang ◽  
Dimitris Rizos

Abstract Railway provides more than 40% of the freight ton-miles moved in the U.S. each year, surpassing all other modes of transportation. In addition to moving more tonnage farther than other modes, trains have better fuel efficiency than trucks and airplanes due to the low friction between the wheels and the rails. With traffic accumulation, rails will degrade which may lead to different types of defects, including but not limited to spalling, separation, crack, and corrugation. Rail head fissures or surface crack is often associated with rolling fatigue and must be addressed through grinding or other maintenance activities to restore the smooth-running surface. This ensures the riding conforms to operational safety requirements. The growth pattern of rail surface cracks has not been thoroughly understood or well-quantified yet due to the difficulties of rail crack inspection and insufficient data. This paper presents a study that uses image analysis techniques to detect and quantify cracks in images of rail segments that were taken in the field. Various crack detection techniques were tested and compared with visual inspection, including thresholding, edge detection, and bottom-hat filtering. The crack length, direction, and curvature were also quantified with each approach. Cracks were found to grow not perpendicular to the rail head, but with a certain angle from the vertical direction and relatively evenly distributed along the rail. The bottom-hat filtering technique was found to be the best in terms of accuracy among the methods tested in this study. The results from the study fill the gap of the literature by quantitatively characterizing the rail crack growth pattern and helping to identify possible approaches for future autonomous crack detection.


2020 ◽  
Vol 10 (22) ◽  
pp. 8105
Author(s):  
Jung Jin Kim ◽  
Ah-Ram Kim ◽  
Seong-Won Lee

The damage investigation and inspection methods for infrastructures performed in small-scale (type III) facilities usually involve a visual examination by an inspector using surveying tools (e.g., cracking, crack microscope, etc.) in the field. These methods can interfere with the subjectivity of the inspector, which may reduce the objectivity and reliability of the record. Therefore, a new image analysis technique is needed to automatically detect cracks and analyze the characteristics of the cracks objectively. In this study, an image analysis technique using deep learning is developed to detect cracks and analyze characteristics (e.g., length, and width) in images for small-scale facilities. Three stages of image processing pipeline are proposed to obtain crack detection and its characteristics. In the first and second stages, two-dimensional convolutional neural networks are used for crack image detection (e.g., classification and segmentation). Based on convolution neural network for the detection, hierarchical feature learning architecture is applied into our deep learning network. After deep learning-based detection, in the third stage, thinning and tracking algorithms are applied to analyze length and width of crack in the image. The performance of the proposed method was tested using various crack images with label and the results showed good performance of crack detection and its measurement.


2021 ◽  
Vol 147 (4) ◽  
pp. 04021019
Author(s):  
Joshua E. Woods ◽  
Yuan-Sen Yang ◽  
Pei-Ching Chen ◽  
David T. Lau ◽  
Jeffrey Erochko

Author(s):  
Luka Kufrin ◽  
O. Postolache ◽  
A. Lopes Ribeiro ◽  
H. M. Geirinhas Ramos

2016 ◽  
Vol 65 (3) ◽  
pp. 583-590 ◽  
Author(s):  
Romulo Goncalves Lins ◽  
Sidney N. Givigi

Ultrasonics ◽  
2014 ◽  
Vol 54 (6) ◽  
pp. 1642-1648 ◽  
Author(s):  
Thouraya Merazi-Meksen ◽  
Malika Boudraa ◽  
Bachir Boudraa

Sign in / Sign up

Export Citation Format

Share Document