Optical In-Flight Wing Deformation Measurements with the Image Pattern Correlation Technique

Author(s):  
Ralf Meyer ◽  
Tania Kirmse ◽  
Fritz Boden
2018 ◽  
Author(s):  
T. Kirmse ◽  
F. Boden ◽  
A. Yu. Poroykov ◽  
K. M. Lapitskiy ◽  
Yu. V. Ivanova ◽  
...  

2016 ◽  
Vol 120 (1234) ◽  
pp. 1917-1931 ◽  
Author(s):  
J. Bakunowicz ◽  
R. Meyer

ABSTRACTFlight testing is both vital for collecting data for aeronautic research and at the same time fascinating for its contributors. Taking a glider as a versatile test bed example, this paper presents a transnational measurement campaign within the framework of a collaborative project funded by the European Commission. This project Advanced In-Flight Measurement Techniques 2 (AIM²) is a follow-up of Advanced In-Flight Measurement Techniques (AIM) and dedicated to developing and enhancing promising optical metrology for various flight test applications up to an industrial level.The Image Pattern Correlation Technique (IPCT) and infrared thermography (IRT) are two of these modern non-intrusive measurement methods that were further developed and applied to the glider test bed within the scope of AIM². Focusing on optical deformation measurements with IPCT the experimental setup, the flight testing and results are summarily discussed. Gliders are not commonly used flight test platforms, which is why this contribution concludes with some lessons learned in general and especially related to the presented application. The experience to be shared with the flight testing community addresses equipment preparation, data collection and processing as well as how to meet official requirements and perform test flight operations in a dense controlled airspace.


2010 ◽  
Vol 18 (6) ◽  
pp. 5661 ◽  
Author(s):  
Daniel D. Aguayo ◽  
Fernando Mendoza Santoyo ◽  
Manuel H. De la Torre-I ◽  
Manuel D. Salas-Araiza ◽  
Cristian Caloca-Mendez ◽  
...  

2011 ◽  
Vol 03 (02) ◽  
pp. 335-354 ◽  
Author(s):  
JIANYONG HUANG ◽  
XIAOCHANG PAN ◽  
SHANSHAN LI ◽  
XIAOLING PENG ◽  
CHUNYANG XIONG ◽  
...  

This paper develops a set of digital volume correlation (DVC) algorithms to address 3-D deformation measurements of soft gels with the aid of laser-scanning confocal microscopy. As an extension of the well-developed digital image correlation (DIC) method, the present DVC approach adopts a three-dimensional zero-normalized cross-correlation criterion (3-D ZNCC) to perform volume correlation calculations. Based on a 3-D sum-table scheme and the fast Fourier transform technique, a fast algorithm is first proposed to accelerate the integer-voxel correlation computations. Subsequently, two kinds of sub-voxel registration algorithms, i.e., 3-D gradient-based algorithm and 3-D Newton–Raphson algorithm, are presented to obtain the sub-voxel displacement and strain fields of volume images before and after deformation. Both a series of computer-simulated digital volume images and an actual agarose gel sample randomly embedded with fluorescent particles are employed to verify the 3-D deformation measurement capability of the proposed DVC algorithms, which indicates that they are competent to acquire 3-D displacement and strain fields of soft gels.


Sign in / Sign up

Export Citation Format

Share Document