Study of Piezo-Excited Lamb Waves in Laminated Composite Plates

Author(s):  
A. Karmazin ◽  
E. Kirillova ◽  
P. Syromyatnikov ◽  
E. Gorshkova
1984 ◽  
Vol 76 (S1) ◽  
pp. S66-S66
Author(s):  
D. E. Chimenti ◽  
Adnan H. Nayfeh

2014 ◽  
Vol 1014 ◽  
pp. 3-8
Author(s):  
Zai Lin Yang ◽  
Hamada M. Elgamal ◽  
Jian Wei Zhang

With advantages including capability of propagation over a significant distance and high sensitivity to abnormalities and inhomogeneity near the wave propagation path, Lamb waves can be energised to disseminate in a structure and any changes in material properties or structural geometry created by a discontinuity, boundary or structural damage can be identified by examining the scattered wave signals. This paper presents an overview of the Lamb-wave-based damage identification in laminated composite plates including the formulation of lamb waves in an isotropic plate.


Author(s):  
Lingyu Yu ◽  
Zhaoyun Ma

Abstract Composite materials are widely used in aerospace industries due to their light weight, strength, and various other desired properties. However, they are susceptible to various defects occurring during the manufacturing process or in service. Typical defects include porosity, wrinkles, and delamination. Nondestructive means of detection of the defects at any stage are of great importance to ensure quality and safety of composite structures. A nonintrusive removable Lamb wave system and accompanied methodology that is not material-dependent is presented in this paper to detect various types of typical defects in laminated composite plates, flat or curved. Through multidimensional data acquisition and processing, abnormality in waves caused by defects is captured and presented in inspection images. The methodologies are demonstrated in 2 cases: delamination in a curved plate, and wrinkles in a flat plate. Overall the results show that Lamb waves using the piezoelectric transducer and laser vibrometer system can be used for various types of defects inspection in flat or curved composite plates.


Author(s):  
Hasan Kasım

This study aims to determine the ballistic performances of laminated composite plates produced with AA5083-H112 series aluminum and rubber material with high elongation capacity under impact loading. To investigate the effect of rubber compounds, two types of rubber with calendered and damping were prepared. Thanks to the surface treatment applied to the aluminum plates, the rubber–metal adhesion strength was adjusted, and four different laminated composite plate samples were prepared. Calendered rubber was used on the bullet impact surface of all samples, and damping rubber was used on the back. It has been observed that the pressure barrier created by the calendered rubber bullet on the front face provides high performance to absorb energy. A detailed study was carried out on the total thickness of laminated composite plates, the interface adhesion strength between rubber and aluminum layers, and the ballistic performance of aluminum-rubber combinations. It was concluded that the laminated composite plate’s energy absorption would increase, especially by increasing the thickness of the dumping rubber layer on the back of the aluminum sheets. In the strong metal-rubber interface interaction between the rubber and aluminum layer, the bullet is stopped before the pressure barrier is formed. The penetration depth and bulging height increase, and most of the energy are transmitted through the aluminum plate. In the weak metal-rubber interface interaction, a significant portion of the energy is absorbed by the rubber and air thanks to the pressure barrier.


Sign in / Sign up

Export Citation Format

Share Document