Comparison with Experimental Data in a Flat Plate Turbulent Gas-Particles Boundary Layer

Author(s):  
Viktor I. Terekhov ◽  
Maksim A. Pakhomov
1970 ◽  
Vol 37 (4) ◽  
pp. 1172-1176 ◽  
Author(s):  
M. E. McCormick ◽  
T. C. Ripley

Results of an experimental study of the turbulence-induced random vibrations of a thin metal ribbon show that an interaction between the vibrating surface and the turbulence exists which results in an increase in the turbulent energy within the boundary layer. In addition, the system damping is shown to vary with the free-stream velocity and to be proportional to the amplitude response of the ribbon. The experimental data and an accompanying theoretical analysis give support to the belief that the damping is primarily a velocity-squared type which is characteristic of a flat plate vibrating normally in a fluid.


1970 ◽  
Vol 43 (3) ◽  
pp. 497-511 ◽  
Author(s):  
J. L. Stollery

Cheng's analysis of strong viscous interaction between a laminar boundary layer growing over a flat plate and the external hypersonic flow field is extended to cover curved surfaces. It is demonstrated that the solutions for some concave surfaces are oscillatory and quantitatively unrealistic. The reason for this behaviour is that the Busemann term in the Newton–Busemann pressure law used in Cheng's analysis over-corrects for centrifugal effects. The removal of the Busemann term or the substitution of the tangent-wedge pressure law results in an alternative analysis which can cover both strong and weak viscous interaction over a wide variety of two-dimensional shapes. A number of examples are included together with comparative experimental data.


2012 ◽  
Vol 15 (6) ◽  
pp. 585-593
Author(s):  
M. Jana ◽  
S. Das ◽  
S. L. Maji ◽  
Rabindra N. Jana ◽  
S. K. Ghosh

2021 ◽  
Author(s):  
Adarsh Prasannakumar ◽  
Michelangelo Corelli Grappadelli ◽  
Arne Seitz ◽  
Camli Badrya

Sign in / Sign up

Export Citation Format

Share Document