Acquisition of Context-Based Active Word Recognition by Q-Learning Using a Recurrent Neural Network

Author(s):  
Ahmad Afif Mohd Faudzi ◽  
Katsunari Shibata
2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Fetulhak Abdurahman ◽  
Eyob Sisay ◽  
Kinde Anlay Fante

AbstractAmharic ("Image missing") is the official language of the Federal Government of Ethiopia, with more than 27 million speakers. It uses an Ethiopic script, which has 238 core and 27 labialized characters. It is a low-resourced language, and a few attempts have been made so far for its handwritten text recognition. However, Amharic handwritten text recognition is challenging due to the very high similarity between characters. This paper presents a convolutional recurrent neural networks based offline handwritten Amharic word recognition system. The proposed framework comprises convolutional neural networks (CNNs) for feature extraction from input word images, recurrent neural network (RNNs) for sequence encoding, and connectionist temporal classification as a loss function. We designed a custom CNN model and compared its performance with three different state-of-the-art CNN models, including DenseNet-121, ResNet-50 and VGG-19 after modifying their architectures to fit our problem domain, for robust feature extraction from handwritten Amharic word images. We have conducted detailed experiments with different CNN and RNN architectures, input word image sizes, and applied data augmentation techniques to enhance performance of the proposed models. We have prepared a handwritten Amharic word dataset, HARD-I, which is available publicly for researchers. From the experiments on various recognition models using our dataset, a WER of 5.24 % and CER of 1.15 % were achieved using our best-performing recognition model. The proposed models achieve a competitive performance compared to existing models for offline handwritten Amharic word recognition.


ETRI Journal ◽  
2016 ◽  
Author(s):  
Mohammad Fazel Younessy Ghadikolaie ◽  
Ehsanolah Kabir ◽  
Farbod Razzazi

Author(s):  
Manal Boualam ◽  
Youssef Elfakir ◽  
Ghizlane Khaissidi ◽  
Mostafa Mrabti

2020 ◽  
Vol 39 (6) ◽  
pp. 8927-8935
Author(s):  
Bing Zheng ◽  
Dawei Yun ◽  
Yan Liang

Under the impact of COVID-19, research on behavior recognition are highly needed. In this paper, we combine the algorithm of self-adaptive coder and recurrent neural network to realize the research of behavior pattern recognition. At present, most of the research of human behavior recognition is focused on the video data, which is based on the video number. At the same time, due to the complexity of video image data, it is easy to violate personal privacy. With the rapid development of Internet of things technology, it has attracted the attention of a large number of experts and scholars. Researchers have tried to use many machine learning methods, such as random forest, support vector machine and other shallow learning methods, which perform well in the laboratory environment, but there is still a long way to go from practical application. In this paper, a recursive neural network algorithm based on long and short term memory (LSTM) is proposed to realize the recognition of behavior patterns, so as to improve the accuracy of human activity behavior recognition.


2020 ◽  
Vol 2020 (17) ◽  
pp. 2-1-2-6
Author(s):  
Shih-Wei Sun ◽  
Ting-Chen Mou ◽  
Pao-Chi Chang

To improve the workout efficiency and to provide the body movement suggestions to users in a “smart gym” environment, we propose to use a depth camera for capturing a user’s body parts and mount multiple inertial sensors on the body parts of a user to generate deadlift behavior models generated by a recurrent neural network structure. The contribution of this paper is trifold: 1) The multimodal sensing signals obtained from multiple devices are fused for generating the deadlift behavior classifiers, 2) the recurrent neural network structure can analyze the information from the synchronized skeletal and inertial sensing data, and 3) a Vaplab dataset is generated for evaluating the deadlift behaviors recognizing capability in the proposed method.


Sign in / Sign up

Export Citation Format

Share Document