Remote Sensing Based Identification of Painted Rock Shelter Sites: Appraisal Using Advanced Wide Field Sensor, Neural Network and Field Observations

Author(s):  
Ruman Banerjee ◽  
Prashant K. Srivastava
2021 ◽  
Vol 13 (15) ◽  
pp. 3000
Author(s):  
Georg Zitzlsberger ◽  
Michal Podhorányi ◽  
Václav Svatoň ◽  
Milan Lazecký ◽  
Jan Martinovič

Remote-sensing-driven urban change detection has been studied in many ways for decades for a wide field of applications, such as understanding socio-economic impacts, identifying new settlements, or analyzing trends of urban sprawl. Such kinds of analyses are usually carried out manually by selecting high-quality samples that binds them to small-scale scenarios, either temporarily limited or with low spatial or temporal resolution. We propose a fully automated method that uses a large amount of available remote sensing observations for a selected period without the need to manually select samples. This enables continuous urban monitoring in a fully automated process. Furthermore, we combine multispectral optical and synthetic aperture radar (SAR) data from two eras as two mission pairs with synthetic labeling to train a neural network for detecting urban changes and activities. As pairs, we consider European Remote Sensing (ERS-1/2) and Landsat 5 Thematic Mapper (TM) for 1991–2011 and Sentinel 1 and 2 for 2017–2021. For every era, we use three different urban sites—Limassol, Rotterdam, and Liège—with at least 500km2 each, and deep observation time series with hundreds and up to over a thousand of samples. These sites were selected to represent different challenges in training a common neural network due to atmospheric effects, different geographies, and observation coverage. We train one model for each of the two eras using synthetic but noisy labels, which are created automatically by combining state-of-the-art methods, without the availability of existing ground truth data. To combine the benefit of both remote sensing types, the network models are ensembles of optical- and SAR-specialized sub-networks. We study the sensitivity of urban and impervious changes and the contribution of optical and SAR data to the overall solution. Our implementation and trained models are available publicly to enable others to utilize fully automated continuous urban monitoring.


2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


Author(s):  
Xiaochuan Tang ◽  
Mingzhe Liu ◽  
Hao Zhong ◽  
Yuanzhen Ju ◽  
Weile Li ◽  
...  

Landslide recognition is widely used in natural disaster risk management. Traditional landslide recognition is mainly conducted by geologists, which is accurate but inefficient. This article introduces multiple instance learning (MIL) to perform automatic landslide recognition. An end-to-end deep convolutional neural network is proposed, referred to as Multiple Instance Learning–based Landslide classification (MILL). First, MILL uses a large-scale remote sensing image classification dataset to build pre-train networks for landslide feature extraction. Second, MILL extracts instances and assign instance labels without pixel-level annotations. Third, MILL uses a new channel attention–based MIL pooling function to map instance-level labels to bag-level label. We apply MIL to detect landslides in a loess area. Experimental results demonstrate that MILL is effective in identifying landslides in remote sensing images.


2021 ◽  
Vol 26 (1) ◽  
pp. 200-215
Author(s):  
Muhammad Alam ◽  
Jian-Feng Wang ◽  
Cong Guangpei ◽  
LV Yunrong ◽  
Yuanfang Chen

AbstractIn recent years, the success of deep learning in natural scene image processing boosted its application in the analysis of remote sensing images. In this paper, we applied Convolutional Neural Networks (CNN) on the semantic segmentation of remote sensing images. We improve the Encoder- Decoder CNN structure SegNet with index pooling and U-net to make them suitable for multi-targets semantic segmentation of remote sensing images. The results show that these two models have their own advantages and disadvantages on the segmentation of different objects. In addition, we propose an integrated algorithm that integrates these two models. Experimental results show that the presented integrated algorithm can exploite the advantages of both the models for multi-target segmentation and achieve a better segmentation compared to these two models.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Luzhe Huang ◽  
Hanlong Chen ◽  
Yilin Luo ◽  
Yair Rivenson ◽  
Aydogan Ozcan

AbstractVolumetric imaging of samples using fluorescence microscopy plays an important role in various fields including physical, medical and life sciences. Here we report a deep learning-based volumetric image inference framework that uses 2D images that are sparsely captured by a standard wide-field fluorescence microscope at arbitrary axial positions within the sample volume. Through a recurrent convolutional neural network, which we term as Recurrent-MZ, 2D fluorescence information from a few axial planes within the sample is explicitly incorporated to digitally reconstruct the sample volume over an extended depth-of-field. Using experiments on C. elegans and nanobead samples, Recurrent-MZ is demonstrated to significantly increase the depth-of-field of a 63×/1.4NA objective lens, also providing a 30-fold reduction in the number of axial scans required to image the same sample volume. We further illustrated the generalization of this recurrent network for 3D imaging by showing its resilience to varying imaging conditions, including e.g., different sequences of input images, covering various axial permutations and unknown axial positioning errors. We also demonstrated wide-field to confocal cross-modality image transformations using Recurrent-MZ framework and performed 3D image reconstruction of a sample using a few wide-field 2D fluorescence images as input, matching confocal microscopy images of the same sample volume. Recurrent-MZ demonstrates the first application of recurrent neural networks in microscopic image reconstruction and provides a flexible and rapid volumetric imaging framework, overcoming the limitations of current 3D scanning microscopy tools.


Sign in / Sign up

Export Citation Format

Share Document