Evaluation of the Seismic Capacity of Nonstructural Components

Author(s):  
Gennaro Magliulo ◽  
Crescenzo Petrone ◽  
Giuseppe Maddaloni ◽  
Pauline Lopez ◽  
Gaetano Manfredi
2016 ◽  
Vol 54 (9) ◽  
pp. 930-935
Author(s):  
M. Suzuki ◽  
R. Kasakura ◽  
Y. Kato ◽  
T. Maki
Keyword(s):  

2019 ◽  
Vol 3 (Special Issue on First SACEE'19) ◽  
pp. 199-206
Author(s):  
Bertha Olmos ◽  
José Jara ◽  
José Luis Fabián

This paper investigates the effects of the nonlinear behaviour of isolation pads on the seismic capacity of bridges to identify the parameters of base isolation systems that can be used to improve seismic performance of bridges. A parametric study was conducted by designing a set of bridges for three different soil types and varying the number of spans, span lengths, and pier heights. The seismic responses (acceleration, displacement and pier seismic forces) were evaluated for two structural models. The first model corresponded to the bridges supported on elastomeric bearings with linear elastic behaviour and the second model simulated a base isolated bridge that accounts for the nonlinear behaviour of the system. The seismic demand was represented with a group of twelve real accelerograms recorded on the subduction zone on the Pacific Coast of Mexico. The nonlinear responses under different damage scenarios for the bridges included in the presented study were estimated. These results allow determining the seismic capacity of the bridges with and without base isolation. Results show clearly the importance of considering the nonlinear behaviour on the seismic performance of bridges and the influence of base isolation on the seismic vulnerability of medium size bridges.


2014 ◽  
Vol 42 (3) ◽  
pp. 629-651
Author(s):  
Waleed Abo El-Wafa Mohamed

2018 ◽  
Vol 122 ◽  
pp. 572-584 ◽  
Author(s):  
Crescenzo Petrone ◽  
Orsola Coppola ◽  
Gennaro Magliulo ◽  
Pauline Lopez ◽  
Gaetano Manfredi

2020 ◽  
Vol 36 (2_suppl) ◽  
pp. 213-237
Author(s):  
Miguel A Jaimes ◽  
Adrián D García-Soto

This study presents an evaluation of floor acceleration demands for the design of rigid and flexible acceleration-sensitive nonstructural components in buildings, calculated using the most recent Mexico City seismic design provisions, released in 2017. This evaluation includes two approaches: (1) a simplified continuous elastic model and (2) using recordings from 10 instrumented buildings located in Mexico City. The study found that peak floor elastic acceleration demands imposed on rigid nonstructural components into buildings situated in Mexico City might reach values of 4.8 and 6.4 times the peak ground acceleration at rock and soft sites, respectively. The peak elastic acceleration demands imposed on flexible nonstructural components in all floors, estimated using floor response spectra, might be four times larger than the maximum acceleration of the floor at the point of support of the component for buildings located in rock and soft soil. Comparison of results from the two approaches with the current seismic design provisions revealed that the peak acceleration demands and floor response spectra computed with the current 2017 Mexico City seismic design provisions are, in general, adequate.


2021 ◽  
pp. 875529302098802
Author(s):  
Janise Rodgers ◽  
Wael Hassan ◽  
Christopher Motter ◽  
John Thornley

The 2018 M7.1 Anchorage earthquake damaged over 120 schools in the Anchorage and Matanuska-Susitna (Mat-Su) School Districts. Many remained closed for a week or more for cleanup and repairs, primarily due to nonstructural damage. Major structural damage occurred in three of 132 school buildings across both districts, and a number of additional schools had minor to moderate damage. Most observed damage was to nonstructural components, including suspended ceilings, lighting, architectural finishes, building utility systems, and equipment. Middle and high schools were in session at the time of the earthquake. Despite ceiling damage and fallen ceiling tiles, books, and supplies (heavy furniture was anchored) and objects swinging from the ceiling, both districts reported very few injuries. Statements by the school districts and administrators, media reports, and available video indicate that most students dropped, covered, and held on as practiced in regular drills. The combination of life-safety structural performance (with a few exceptions) due in part to moderate shaking, as well as anchoring of heavy furnishings, and student preparedness and drills to practice protective action, appears to have protected students. Both districts’ experiences provide evidence that school seismic safety programs are valuable, even if efforts to mitigate risks from older, vulnerable schools are in process and more work remains.


Sign in / Sign up

Export Citation Format

Share Document