Seismic Capacity of RC Column Reinforced by Hydraulic Resin and Fiber Sheets

2016 ◽  
Vol 54 (9) ◽  
pp. 930-935
Author(s):  
M. Suzuki ◽  
R. Kasakura ◽  
Y. Kato ◽  
T. Maki
Keyword(s):  
Author(s):  
Chien-Kuo Chiu ◽  
Hsin-Fang Sung ◽  
Kai-Ning Chi ◽  
Fu-Pei Hsiao

Abstract To quantify the post-earthquake residual seismic capacity of reinforced concrete (RC) column members, experimental data for 6 column specimens with flexural, flexural–shear and shear failure modes are used to derive residual seismic capacity of damaged RC column members for specified damage states in this work. Besides of the experiment data, some related researches are also investigated to suggest the reduction factors of strength, stiffness and energy dissipation capacity for damaged RC column members, respectively. According to the damage states of RC columns, their corresponding seismic reduction factors are suggested herein. Taking an RC column with the flexural–shear failure for an example, its reductions factors of strength, stiffness and energy dissipation capacity are 0.5, 0.6 and 0.1, respectively. This work also proposes the seismic performance assessment method for the residual seismic performance of earthquake-damaged RC buildings. In the case study, this work selects one actual earthquake-damaged school building to demonstrate the post-earthquake assessment of seismic performance for a damaged RC building.


Author(s):  
Chien-Kuo Chiu ◽  
Chia-Hsin Wu ◽  
Hsin-Fang Sung ◽  
Wen-I Liao ◽  
Chih-Hsien Lin

To quantify damage to reinforced concrete (RC) column members after an earthquake, an engineer needs to know the maximum applied force that was generated by the earthquake. Therefore, in this work, piezoceramic transducers are used to detect the applied force on an RC column member under dynamic loading. To investigate the use of post-embedded piezoceramic sensors in detecting the force that is applied to RC columns, eight full-size RC column specimens with various failure modes are tested under specific earthquake loadings. Post-embedded piezoceramic sensors are installed at a range of depths (70-80 mm) beneath the surface of a column specimen to examine the relationship between the signals that are obtained from them and the force applied by the dynamic actuator. The signals that are generated by the post-embedded piezoceramic sensors, which correlate with the applied force, are presented. These results indicate that the post-embedded piezoceramic sensors have great potential as tools for measuring the maximum applied force on an RC column in an earthquake. Restated, signals that are obtained from post-embedded piezoceramic sensors on an RC column in an earthquake can be used to determine the applied force and corresponding damage or residual seismic capacity.


2020 ◽  
Vol 10 (15) ◽  
pp. 5061
Author(s):  
Chien-Kuo Chiu ◽  
Chia-Hsin Wu ◽  
Hsin-Fang Sung ◽  
Wen-I Liao ◽  
Chih-Hsien Lin

To quantify damage to reinforced concrete (RC) column members after an earthquake, an engineer needs to know the maximum applied force that was generated by the earthquake. Therefore, in this work, piezoceramic transducers were used to detect the applied force on an RC column member under dynamic loading. To investigate the use of post-embedded piezoceramic sensors in detecting the force that is applied to RC columns, eight full-size RC column specimens with various failure modes were tested under specific earthquake loadings. Post-embedded piezoceramic sensors were installed at a range of depths (70–80 mm) beneath the surface of a column specimen to examine the relationship between the signals that were obtained from them and the force applied by the dynamic actuator. The signals that were generated by the post-embedded piezoceramic sensors, which correlate with the applied force, are presented. These results indicate that the post-embedded piezoceramic sensors have great potential as tools for measuring the maximum applied force on an RC column in an earthquake. In other words, signals that are obtained from post-embedded piezoceramic sensors on an RC column in an earthquake can be used to determine the applied force and corresponding damage or residual seismic capacity.


2019 ◽  
Vol 3 (Special Issue on First SACEE'19) ◽  
pp. 199-206
Author(s):  
Bertha Olmos ◽  
José Jara ◽  
José Luis Fabián

This paper investigates the effects of the nonlinear behaviour of isolation pads on the seismic capacity of bridges to identify the parameters of base isolation systems that can be used to improve seismic performance of bridges. A parametric study was conducted by designing a set of bridges for three different soil types and varying the number of spans, span lengths, and pier heights. The seismic responses (acceleration, displacement and pier seismic forces) were evaluated for two structural models. The first model corresponded to the bridges supported on elastomeric bearings with linear elastic behaviour and the second model simulated a base isolated bridge that accounts for the nonlinear behaviour of the system. The seismic demand was represented with a group of twelve real accelerograms recorded on the subduction zone on the Pacific Coast of Mexico. The nonlinear responses under different damage scenarios for the bridges included in the presented study were estimated. These results allow determining the seismic capacity of the bridges with and without base isolation. Results show clearly the importance of considering the nonlinear behaviour on the seismic performance of bridges and the influence of base isolation on the seismic vulnerability of medium size bridges.


2018 ◽  
Vol 122 ◽  
pp. 572-584 ◽  
Author(s):  
Crescenzo Petrone ◽  
Orsola Coppola ◽  
Gennaro Magliulo ◽  
Pauline Lopez ◽  
Gaetano Manfredi

2021 ◽  
Vol 11 (9) ◽  
pp. 4043
Author(s):  
Aleksandar Landović ◽  
Miroslav Bešević

Experimental research on axially compressed columns made from reinforced concrete (RC) and RC columns strengthened with a steel jacket and additional fill concrete is presented in this paper. A premade squared cross-section RC column was placed inside a steel tube, and then the space between the column and the tube was filled with additional concrete. A total of fourteen stub axially compressed columns, including nine strengthened specimens and five plain reinforced concrete specimens, were experimentally tested. The main parameter that was varied in the experiment was the compressive strength of the filler concrete. Three different concrete compression strength classes were used. Test results showed that all three cross-section parts (the core column, the fill, and the steel jacket) worked together in the force-carrying process through all load levels, even if only the basic RC column was loaded. The strengthened columns exhibited pronounced ductile behavior compared to the plain RC columns. The influence of the test parameters on the axial compressive strength was investigated. In addition, the specimen failure modes, strain development, and load vs. deformation relations were registered. The applicability of three different design codes to predict the axial bearing capacity of the strengthened columns was also investigated.


Sign in / Sign up

Export Citation Format

Share Document