Dynamic Analysis of the High-Speed Flexible Rotors Supported on the Electrodynamic Passive Magnetic Bearings

Author(s):  
Tomasz Szolc ◽  
Krzysztof Falkowski
Author(s):  
Yuichi Nakajima ◽  
Takahito Sagane ◽  
Hiroshi Tajima ◽  
Toru Watanabe ◽  
Kazuto Seto

This paper proposes a new modeling technique and control system design for flexible rotors using active magnetic bearings (AMB) to pass through many critical speeds and fulfill high-speed rotation. To achieve this purpose, it is necessary to control not only motion but also many modes of bending vibration. For the purpose, an extended reduced order physical model that is able to express simultaneously the motion and bending vibration of the flexible rotor, is proposed. Furthermore, a new controller combined PID with LQ control is adapted to control the flexible rotor. Effectiveness of the proposed modeling and control approach for the flexible rotor is verified through simulations and experiments.


2021 ◽  
pp. 1-23
Author(s):  
Zhiwei Wang ◽  
Zhonghui Yin ◽  
Paul Allen ◽  
Ruichen Wang ◽  
Qing Xiong ◽  
...  

2012 ◽  
Vol 591-593 ◽  
pp. 303-306
Author(s):  
Xiao You Zhang ◽  
Akio Kifuji ◽  
Dong Jue He

Electrical discharge machining has the capability of machining all conductive materials regardless of hardness, and has the ability to deal with complex shapes. However, the speed and accuracy of conventional EDM are limited by probability and efficiency of the electrical discharges. This paper describes a three degrees of freedom (3-DOF) controlled, wide-bandwidth, high-precision, long-stroke magnetic drive actuator. The actuator can be attached to conventional electrical discharge machines to realize a high-speed and high-accuracy EDM. The actuator primarily consists of thrust and radial magnetic bearings, thrust and radial air bearings and a magnetic coupling mechanism. By using the thrust and radial magnetic bearings, the translational motions of the spindle can be controlled. The magnetic drive actuator possesses a positioning resolution of the order of micrometer, a bandwidth greater than 100Hz and a positioning stroke of 2mm.


1983 ◽  
Vol 105 (3) ◽  
pp. 492-497 ◽  
Author(s):  
A. T. Yang ◽  
Sun Zhishang

In this paper we present a dynamic analysis of a general spherical four-link mechanism whose links have arbitrary mass distribution. Results, which are in explicit analytical expressions in terms of inertia-induced forces and moments in links, are useful for optimum design of the mechanism under high-speed operation.


1992 ◽  
pp. 19-26 ◽  
Author(s):  
C. R. Knospe ◽  
R. R. Humphris ◽  
E. H. Maslen ◽  
P. E. Allaire

2018 ◽  
Vol 180 ◽  
pp. 01005 ◽  
Author(s):  
Andrzej Wilk

Transmission of electrical energy from a catenary system to traction units must be safe and reliable especially for high speed trains. Modern pantographs have to meet these requirements. Pantographs are subjected to several forces acting on their structural elements. These forces come from pantograph drive, inertia forces, aerodynamic effects, vibration of traction units etc. Modern approach to static and dynamic analysis should take into account: mass distribution of particular parts, physical properties of used materials, kinematic joints character at mechanical nodes, nonlinear parameters of kinematic joints, defining different parametric waveforms of forces and torques, and numerical dynamic simulation coupled with FEM calculations. In this work methods for the formulation of the governing equations of motion are presented. Some of these methods are more suitable for automated computer implementation. The novel computer methods recommended for static and dynamic analysis of pantographs are presented. Possibilities of dynamic analysis using CAD and CAE computer software are described. Original results are also presented. Conclusions related to dynamic properties of pantographs are included. Chapter 2 presents the methods used for formulation of the equation of pantograph motion. Chapter 3 is devoted to modelling of forces in multibody systems. In chapter 4 the selected computer tools for dynamic analysis are described. Chapter 5 shows the possibility of FEM analysis coupled with dynamic simulation. In chapter 6 the summary of this work is presented.


Sign in / Sign up

Export Citation Format

Share Document