Molecular Mechanisms of DNA Damage and Repair

Author(s):  
David S. Chang ◽  
Foster D. Lasley ◽  
Indra J. Das ◽  
Marc S. Mendonca ◽  
Joseph R. Dynlacht
2008 ◽  
Vol 10 (5) ◽  
pp. 891-938 ◽  
Author(s):  
Fabio Altieri ◽  
Caterina Grillo ◽  
Manola Maceroni ◽  
Silvia Chichiarelli

2021 ◽  
Vol 14 ◽  
Author(s):  
Haibo Wang ◽  
Manohar Kodavati ◽  
Gavin W. Britz ◽  
Muralidhar L. Hegde

Emerging studies reveal that neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), are commonly linked to DNA damage accumulation and repair deficiency. Neurons are particularly vulnerable to DNA damage due to their high metabolic activity, relying primarily on oxidative phosphorylation, which leads to increased reactive oxygen species (ROS) generation and subsequent DNA damage. Efficient and timely repair of such damage is critical for guarding the integrity of genomic DNA and for cell survival. Several genes predominantly associated with RNA/DNA metabolism have been implicated in both ALS and FTD, suggesting that the two diseases share a common underlying pathology with varied clinical manifestations. Recent studies reveal that many of the gene products, including RNA/DNA binding proteins (RBPs) TDP-43 and FUS are involved in diverse DNA repair pathways. A key question in the etiology of the ALS/FTD spectrum of neurodegeneration is the mechanisms and pathways involved in genome instability caused by dysfunctions/mutations of those RBP genes and their consequences in the central nervous system. The understanding of such converging molecular mechanisms provides insights into the underlying etiology of the rapidly progressing neurodegeneration in ALS/FTD, while also revealing novel DNA repair target avenues for therapeutic development. In this review, we summarize the common mechanisms of neurodegeneration in ALS and FTD, with a particular emphasis on the DNA repair defects induced by ALS/FTD causative genes. We also highlight the consequences of DNA repair defects in ALS/FTD and the therapeutic potential of DNA damage repair-targeted amelioration of neurodegeneration.


2017 ◽  
Author(s):  
Anna R Poetsch ◽  
Simon J Boulton ◽  
Nicholas M Luscombe

AbstractDNA is subject to constant chemical modification and damage, which eventually results in variable mutation rates throughout the genome. Although detailed molecular mechanisms of DNA damage and repair are well-understood, damage impact and execution of repair across a genome remains poorly defined. To bridge the gap between our understanding of DNA repair and mutation distributions we developed a novel method, AP-seq, capable of mapping apurinic sitesand 8-oxo-7,8-dihydroguanine bases at ∼300bp resolution on a genome-wide scale. We directly demonstrate that the accumulation rate of oxidative damage varies widely across the genome, with hot spots acquiring many times more damage than cold spots. Unlike SNVs in cancers, damage burden correlates with marks for open chromatin notably H3K9ac and H3K4me2. Oxidative damage is also highly enriched in transposable elements and other repetitive sequences. In contrast, we observe decreased damage at promoters, exons and termination sites, but not introns, in a seemingly transcription-independent manner. Leveraging cancer genomic data, we also find locally reduced SNV rates in promoters, genes and other functional elements. Taken together, our study reveals that oxidative DNA damage accumulation and repair differ strongly across the genome, but culminate in a previously unappreciated mechanism that safe-guards the regulatory sequences and the coding regions of genes from mutations.


Author(s):  
Sneh M Toprani ◽  
Varsha Kelkar Mane

Abstract There has been a significant annual increase in the number of cases of uterine leiomyomas or fibroids (UF) among women of all races and ages across the world. A fortune is usually spent by the healthcare sector for fibroid-related treatments and management. Molecular studies have established the higher mutational heterogeneity in UF as compared to normal myometrial cells. The contribution of DNA damage and defects in repair responses further increases the mutational burden on the cells. This in turn leads to genetic instability, associated with cancer risk and other adverse reproductive health outcomes. Such and many more growing bodies of literature have highlighted the genetic/molecular, biochemical and clinical aspects of UF; none the less there appear to be a lacuna bridging the bench to bed gap in addressing and preventing this disease. Presented here is an exhaustive review of not only the molecular mechanisms underlying the predisposition to the disease but also possible strategies to effectively diagnose, prevent, manage, and treat this disease.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1817-1817 ◽  
Author(s):  
Lijie Xing ◽  
Liang Lin ◽  
Tengteng Yu ◽  
Yuyin Li ◽  
Kenneth Wen ◽  
...  

A novel anti-BCMA antibody drug conjugate (ADC) MEDI2228 preferentially binds to membrane-bound vs soluble BCMA (sBCMA) to effectively deliver the pyrrolobenzodiazepine (PBD) payload tesirine to multiple myeloma (MM) cells (Leukemia. 2019;33: 766). In preclinical models, this ADC targets both MM cells in bulk and CD19+CD138- patient MM progenitor cells. We here study the potency of MEDI2228 in MM cells in the bone marrow (BM) microenvironment and examine molecular mechanisms whereby MEDI2228 overcomes drug resistance. First, MEDI2228, more effectively than its microtubule-binding monomethyl auristatin-F (MMAF) ADC homolog, inhibits proliferation (>1-2-log) and survival of all MM cell lines and MM cells from patients with multiple relapsed and refractory diseases, regardless of BCMA levels, p53 status, and the protection conferred by BM stromal cells and IL-6. Significantly, MM cells with lower BCMA expression and resistance to bortezomib or immunomodulatory drugs (IMiDs, i.e., lenalidomide, pomalidomide) are more susceptible to MEDI2228 vs its MMAF ADC homolog. MEDI2228, but not its MMAF ADC homolog, activates critical DNA damage responses (DDR) via phosphorylation of ATM/ATR kinases, checkpoint kinases (CHK)1/2, and H2AX, associated with induction of multiple DDR pathway-associated genes. Low doses of MEDI2228 and bortezomib (btz) synergistically induce apoptosis of drug-sensitive and -resistant MM cells, at least in part, through modulation of RAD51, a DNA damage and repair protein. Importantly, MEDI2228 further triggers the ATM/ATR-CHK1/2 signaling cascade, associated with increased gH2AX, p21, and apoptosis molecules in MM1S-xenografted tumors in mice. In vivo, a single sub-optimal dose of 0.4 mg/kg MEDI2228 induces superior anti-MM activity than btz, indicating that MEDI2228 is significantly more effective and selective than btz as single agent therapy in vivo. Furthermore, combined treatments with MEDI2228 and btz result in potent tumor depletion and significantly prolonged host survival via increased nuclear gH2AX-expressing microfoci, DNA damage-induced growth arrest and cell death. Significant tumor necrosis is observed earlier in mice receiving both drugs than either agent alone. At 177d, 15% mice in the combination treatment group remain alive and without any tumor. Importantly, no weight loss is noted in all groups, indicating a favorable safety profile of MEDI2228, alone or with btz, in vivo. Moreover, DDR checkpoint inhibitors, i.e., AZD0156 (ATMi), AZD6738 (ATRi), AZD1775 (WEE1i), synergize with MEDI2228 to enhance MM cell cytotoxicity (combination index < 1). This study therefore further supports clinical development of MEDI2228 (NCT03489525) as an important next-generation immunotherapy to improve outcome of MM patients. Disclosures Kinneer: AstraZeneca: Employment. Munshi:Amgen: Consultancy; Abbvie: Consultancy; Oncopep: Consultancy; Takeda: Consultancy; Janssen: Consultancy; Adaptive: Consultancy; Celgene: Consultancy. Anderson:Celgene: Consultancy, Speakers Bureau; Amgen: Consultancy, Speakers Bureau; Janssen: Consultancy, Speakers Bureau; Takeda: Consultancy, Speakers Bureau; Bristol-Myers Squibb: Other: Scientific Founder; Oncopep: Other: Scientific Founder; Sanofi-Aventis: Other: Advisory Board.


2001 ◽  
Vol 36 (4) ◽  
pp. 337-397 ◽  
Author(s):  
Narendra Tuteja ◽  
Mohan B. Singh ◽  
Mithilesh K. Misra ◽  
Prem L. Bhalla ◽  
Renu Tuteja

2001 ◽  
Vol 1 (6) ◽  
pp. 483-495 ◽  
Author(s):  
Bentham Science Publisher Philip K. Liu

Sign in / Sign up

Export Citation Format

Share Document