Cognitive Brain Signal Processing: Healthy vs Alzheimer’s Disease Patients

Author(s):  
Vasiliki Kosmidou ◽  
Anthoula Tsolaki ◽  
Chrysa Papadaniil ◽  
Magdalini Tsolaki ◽  
Leontios Hadjileontiadis ◽  
...  
2020 ◽  
Author(s):  
Harri Sivasathiaseelan ◽  
Charles R Marshall ◽  
Elia Benhamou ◽  
Janneke EP van Leeuwen ◽  
Rebecca L Bond ◽  
...  

Abstract Background: Laughter is a fundamental communicative signal in our relations with other people and is used to convey a diverse repertoire of social and emotional information. It is therefore potentially a useful probe of impaired socio-emotional signal processing in neurodegenerative diseases. Here we investigated the cognitive and affective processing of laughter systematically in patients representing all major syndromes of frontotemporal dementia, a disease spectrum characterised by severe socio-emotional dysfunction, as well as typical amnestic Alzheimer’s disease in relation to healthy age-matched individuals. Methods: We assessed cognitive labelling and valence rating of samples of spontaneous (mirthful and hostile) and volitional (posed) laughter versus two auditory control conditions (a synthetic laughter-like stimulus and spoken numbers) in 47 patients with frontotemporal dementia (22 with behavioural variant frontotemporal dementia, 12 with semantic variant primary progressive aphasia and 13 with nonfluent-agrammatic primary progressive aphasia), 15 patients with typical amnestic Alzheimer’s disease and 20 healthy age-matched individuals. Neuroanatomical associations of laughter processing were assessed using voxel-based morphometry of patients’ brain MR images. Results: While all dementia syndromes were associated with impaired identification of laughter subtypes relative to healthy controls, this was significantly more severe overall in frontotemporal dementia than in Alzheimer’s disease and particularly in the behavioural and semantic variants, which also showed abnormal affective evaluation of laughter. Certain striking syndromic signatures emerged, including enhanced liking for hostile laughter in behavioural variant frontotemporal dementia, impaired processing of synthetic laughter in the nonfluent-agrammatic variant (consistent with a generic complex auditory perceptual deficit) and ‘numerophilia’ in the semantic variant. Across the patient cohort, overall laughter identification accuracy correlated with regional grey matter in a core network encompassing inferior frontal and cingulo-insular cortices; and more specific correlates of laughter identification accuracy were delineated in cortical regions mediating affective disambiguation (identification of hostile and posed laughter in orbitofrontal cortex) and authenticity (social intent) decoding (identification of mirthful and posed laughter in anteromedial prefrontal cortex).Conclusions: These findings reveal a rich diversity of cognitive and affective laughter phenotypes in canonical dementia syndromes and suggest that laughter is an informative probe of neural mechanisms underpinning socio-emotional dysfunction in neurodegenerative disease.


Biomag 96 ◽  
2000 ◽  
pp. 1057-1059
Author(s):  
E. Pekkonen ◽  
M. Huotilainen ◽  
J. Virtanen ◽  
R. Näätänen ◽  
R. J. Ilmoniemi ◽  
...  

2019 ◽  
Vol 42 ◽  
Author(s):  
Colleen M. Kelley ◽  
Larry L. Jacoby

Abstract Cognitive control constrains retrieval processing and so restricts what comes to mind as input to the attribution system. We review evidence that older adults, patients with Alzheimer's disease, and people with traumatic brain injury exert less cognitive control during retrieval, and so are susceptible to memory misattributions in the form of dramatic levels of false remembering.


Author(s):  
J. Metuzals ◽  
D. F. Clapin ◽  
V. Montpetit

Information on the conformation of paired helical filaments (PHF) and the neurofilamentous (NF) network is essential for an understanding of the mechanisms involved in the formation of the primary lesions of Alzheimer's disease (AD): tangles and plaques. The structural and chemical relationships between the NF and the PHF have to be clarified in order to discover the etiological factors of this disease. We are investigating by stereo electron microscopic and biochemical techniques frontal lobe biopsies from patients with AD and squid giant axon preparations. The helical nature of the lesion in AD is related to pathological alterations of basic properties of the nervous system due to the helical symmetry that exists at all hierarchic structural levels in the normal brain. Because of this helical symmetry of NF protein assemblies and PHF, the employment of structure reconstruction techniques to determine the conformation, particularly the handedness of these structures, is most promising. Figs. 1-3 are frontal lobe biopsies.


Author(s):  
Mark Ellisman ◽  
Maryann Martone ◽  
Gabriel Soto ◽  
Eleizer Masliah ◽  
David Hessler ◽  
...  

Structurally-oriented biologists examine cells, tissues, organelles and macromolecules in order to gain insight into cellular and molecular physiology by relating structure to function. The understanding of these structures can be greatly enhanced by the use of techniques for the visualization and quantitative analysis of three-dimensional structure. Three projects from current research activities will be presented in order to illustrate both the present capabilities of computer aided techniques as well as their limitations and future possibilities.The first project concerns the three-dimensional reconstruction of the neuritic plaques found in the brains of patients with Alzheimer's disease. We have developed a software package “Synu” for investigation of 3D data sets which has been used in conjunction with laser confocal light microscopy to study the structure of the neuritic plaque. Tissue sections of autopsy samples from patients with Alzheimer's disease were double-labeled for tau, a cytoskeletal marker for abnormal neurites, and synaptophysin, a marker of presynaptic terminals.


Author(s):  
D.F. Clapin ◽  
V.J.A. Montpetit

Alzheimer's disease is characterized by the accumulation of abnormal filamentous proteins. The most important of these are amyloid fibrils and paired helical filaments (PHF). PHF are located intraneuronally forming bundles called neurofibrillary tangles. The designation of these structures as "tangles" is appropriate at the light microscopic level. However, localized domains within individual tangles appear to demonstrate a regular spacing which may indicate a liquid crystalline phase. The purpose of this paper is to present a statistical geometric analysis of PHF packing.


Sign in / Sign up

Export Citation Format

Share Document