Matrix Approach and Analog Modeling for Solving Fractional Variable Order Differential Equations

Author(s):  
Wiktor Malesza ◽  
Michal Macias ◽  
Dominik Sierociuk
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Amar Benkerrouche ◽  
Mohammed Said Souid ◽  
Kanokwan Sitthithakerngkiet ◽  
Ali Hakem

AbstractIn this manuscript, we examine both the existence and the stability of solutions to the implicit boundary value problem of Caputo fractional differential equations of variable order. We construct an example to illustrate the validity of the observed results.


Author(s):  
C. J. Zúñiga-Aguilar ◽  
J. F. Gómez-Aguilar ◽  
H. M. Romero-Ugalde ◽  
R. F. Escobar-Jiménez ◽  
G. Fernández-Anaya ◽  
...  

Author(s):  
Constantin Bota ◽  
Bogdan Căruntu

AbstractIn this paper a new way to compute analytic approximate polynomial solutions for a class of nonlinear variable order fractional differential equations is proposed, based on the Polynomial Least Squares Method (PLSM). In order to emphasize the accuracy and the efficiency of the method several examples are included.


Author(s):  
Mohamed M. Khader

AbstractThis paper is devoted to introduce a numerical treatment using the generalized Adams-Bashforth-Moulton method for some of the variable-order fractional modeling dynamics problems, such as Riccati and Logistic differential equations. The fractional derivative is described in Caputo variable-order fractional sense. The obtained numerical results of the proposed models show the simplicity and efficiency of the proposed method. Moreover, the convergence order of the method is also estimated numerically.


Author(s):  
A. M. Nagy ◽  
N. H. Sweilam ◽  
Adel A. El-Sayed

The multiterm fractional variable-order differential equation has a massive application in physics and engineering problems. Therefore, a numerical method is presented to solve a class of variable order fractional differential equations (FDEs) based on an operational matrix of shifted Chebyshev polynomials of the fourth kind. Utilizing the constructed operational matrix, the fundamental problem is reduced to an algebraic system of equations which can be solved numerically. The error estimate of the proposed method is studied. Finally, the accuracy, applicability, and validity of the suggested method are illustrated through several examples.


Sign in / Sign up

Export Citation Format

Share Document