Analytic approximate solutions for a class of variable order fractional differential equations using the polynomial least squares method

Author(s):  
Constantin Bota ◽  
Bogdan Căruntu

AbstractIn this paper a new way to compute analytic approximate polynomial solutions for a class of nonlinear variable order fractional differential equations is proposed, based on the Polynomial Least Squares Method (PLSM). In order to emphasize the accuracy and the efficiency of the method several examples are included.

2019 ◽  
Vol 29 ◽  
pp. 01014
Author(s):  
Marioara Lăpădat ◽  
Mohsen Razzaghi ◽  
Mădălina Sofia Paşca

We use the Polynomial Least Squares Method (PLSM), which allows us to compute analytical approximate polynomial solutions for nonlinear ordinary differential equations with the mixed nonlinear conditions. The accuracy of the method is illustrated by a comparison with approximate solutions previously computed using Bernstein polynomials method.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Amar Benkerrouche ◽  
Mohammed Said Souid ◽  
Kanokwan Sitthithakerngkiet ◽  
Ali Hakem

AbstractIn this manuscript, we examine both the existence and the stability of solutions to the implicit boundary value problem of Caputo fractional differential equations of variable order. We construct an example to illustrate the validity of the observed results.


Author(s):  
A. M. Nagy ◽  
N. H. Sweilam ◽  
Adel A. El-Sayed

The multiterm fractional variable-order differential equation has a massive application in physics and engineering problems. Therefore, a numerical method is presented to solve a class of variable order fractional differential equations (FDEs) based on an operational matrix of shifted Chebyshev polynomials of the fourth kind. Utilizing the constructed operational matrix, the fundamental problem is reduced to an algebraic system of equations which can be solved numerically. The error estimate of the proposed method is studied. Finally, the accuracy, applicability, and validity of the suggested method are illustrated through several examples.


Author(s):  
S. O. Ajibola ◽  
E. O. Oghre ◽  
A. G. Ariwayo ◽  
P. O. Olatunji

By fractional generalised Boussinesq equations we mean equations of the form \begin{equation} \Delta\equiv D_{t}^{2\alpha}-[\mathcal{N}(u)]_{xx}-u_{xxxx}=0, \: 0<\alpha\le1,\label{main}\nonumber \end{equation} where $\mathcal{N}(u)$ is a differentiable function and $\mathcal{N}_{uu}\ne0$ (to ensure nonlinearity). In this paper we lay emphasis on the cubic Boussinesq and Boussinesq-like equations of fractional order and we apply the Laplace homotopy analysis method (LHAM) for their rational and solitary wave solutions respectively. It is true that nonlinear fractional differential equations are often difficult to solve for their {\em exact} solutions and this single reason has prompted researchers over the years to come up with different methods and approach for their {\em analytic approximate} solutions. Most of these methods require huge computations which are sometimes complicated and a very good knowledge of computer aided softwares (CAS) are usually needed. To bridge this gap, we propose a method that requires no linearization, perturbation or any particularly restrictive assumption that can be easily used to solve strongly nonlinear fractional differential equations by hand and simple computer computations with a very quick run time. For the closed form solution, we set $\alpha =1$ for each of the solutions and our results coincides with those of others in the literature.


2019 ◽  
Vol 22 (1) ◽  
pp. 27-59 ◽  
Author(s):  
HongGuang Sun ◽  
Ailian Chang ◽  
Yong Zhang ◽  
Wen Chen

Abstract Variable-order (VO) fractional differential equations (FDEs) with a time (t), space (x) or other variables dependent order have been successfully applied to investigate time and/or space dependent dynamics. This study aims to provide a survey of the recent relevant literature and findings in primary definitions, models, numerical methods and their applications. This review first offers an overview over the existing definitions proposed from different physical and application backgrounds, and then reviews several widely used numerical schemes in simulation. Moreover, as a powerful mathematical tool, the VO-FDE models have been remarkably acknowledged as an alternative and precise approach in effectively describing real-world phenomena. Hereby, we also make a brief summary on different physical models and typical applications. This review is expected to help the readers for the selection of appropriate definition, model and numerical method to solve specific physical and engineering problems.


Sign in / Sign up

Export Citation Format

Share Document