RNAi-Mediated Gene Silencing in the Beta-Lactam Producer Fungi Penicillium chrysogenum and Acremonium chrysogenum

Author(s):  
Carlos García-Estrada ◽  
Ricardo V. Ullán
1986 ◽  
Vol 4 (1) ◽  
pp. 44-47 ◽  
Author(s):  
J. M. Luengo ◽  
M. T. Alemany ◽  
F. Salto ◽  
F. Ramos ◽  
M. J. López-Nieto ◽  
...  

2016 ◽  
Vol 82 (20) ◽  
pp. 6247-6257 ◽  
Author(s):  
Christian Derntl ◽  
Alice Rassinger ◽  
Ewald Srebotnik ◽  
Robert L. Mach ◽  
Astrid R. Mach-Aigner

ABSTRACTThe industrially used ascomyceteTrichoderma reeseisecretes a typical yellow pigment during cultivation, while otherTrichodermaspecies do not. A comparative genomic analysis suggested that a putative secondary metabolism cluster, containing two polyketide-synthase encoding genes, is responsible for the yellow pigment synthesis. This cluster is conserved in a set of rather distantly related fungi, includingAcremonium chrysogenumandPenicillium chrysogenum. In an attempt to silence the cluster inT. reesei, two genes of the cluster encoding transcription factors were individually deleted. For a complete genetic proof-of-function, the genes were reinserted into the genomes of the respective deletion strains. The deletion of the first transcription factor (termed yellow pigment regulator 1 [Ypr1]) resulted in the full abolishment of the yellow pigment formation and the expression of most genes of this cluster. A comparative high-pressure liquid chromatography (HPLC) analysis of supernatants of theypr1deletion and its parent strain suggested the presence of several yellow compounds inT. reeseithat are all derived from the same cluster. A subsequent gas chromatography/mass spectrometry analysis strongly indicated the presence of sorbicillin in the major HPLC peak. The presence of the second transcription factor, termed yellow pigment regulator 2 (Ypr2), reduces the yellow pigment formation and the expression of most cluster genes, including the gene encoding the activator Ypr1.IMPORTANCETrichoderma reeseiis used for industry-scale production of carbohydrate-active enzymes. During growth, it secretes a typical yellow pigment. This is not favorable for industrial enzyme production because it makes the downstream process more complicated and thus increases operating costs. In this study, we demonstrate which regulators influence the synthesis of the yellow pigment. Based on these data, we also provide indication as to which genes are under the control of these regulators and are finally responsible for the biosynthesis of the yellow pigment. These genes are organized in a cluster that is also found in other industrially relevant fungi, such as the two antibiotic producersPenicillium chrysogenumandAcremonium chrysogenum. The targeted manipulation of a secondary metabolism cluster is an important option for any biotechnologically applied microorganism.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6636
Author(s):  
Alexander A. Zhgun ◽  
Mikhail A. Eldarov

The high-yielding production of pharmaceutically significant secondary metabolites in filamentous fungi is obtained by random mutagenesis; such changes may be associated with shifts in the metabolism of polyamines. We have previously shown that, in the Acremonium chrysogenum cephalosporin C high-yielding strain (HY), the content of endogenous polyamines increased by four- to five-fold. Other studies have shown that the addition of exogenous polyamines can increase the production of target secondary metabolites in highly active fungal producers, in particular, increase the biosynthesis of β-lactams in the Penicillium chrysogenum Wis 54–1255 strain, an improved producer of penicillin G. In the current study, we demonstrate that the introduction of exogenous polyamines, such as spermidine or 1,3-diaminopropane, to A. chrysogenum wild-type (WT) and HY strains, leads to an increase in colony germination and morphological changes in a complete agar medium. The addition of 5 mM polyamines during fermentation increases the production of cephalosporin C in the A. chrysogenum HY strain by 15–20% and upregulates genes belonging to the beta-lactam biosynthetic cluster. The data obtained indicate the intersection of the metabolisms of polyamines and beta-lactams in A. chrysogenum and are important for the construction of improved producers of secondary metabolites in filamentous fungi.


2008 ◽  
Vol 75 (2) ◽  
pp. 209-218 ◽  
Author(s):  
Ricardo V. Ullán ◽  
Ramiro P. Godio ◽  
Fernando Teijeira ◽  
Inmaculada Vaca ◽  
Carlos García-Estrada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document