Cooperative Control of a Multi Robot Flocking System for Simultaneous Object Collection and Shepherding

Author(s):  
Ellips Masehian ◽  
Mitra Royan
2019 ◽  
Vol 9 (5) ◽  
pp. 924 ◽  
Author(s):  
Yahui Gan ◽  
Jinjun Duan ◽  
Ming Chen ◽  
Xianzhong Dai

In this paper, the trajectory planning and position/force coordination control of multi-robot systems during the welding process are discussed. Trajectory planning is the basis of the position/ force cooperative control, an object-oriented hierarchical planning control strategy is adopted firstly, which has the ability to solve the problem of complex coordinate transformation, welding process requirement and constraints, etc. Furthermore, a new symmetrical internal and external adaptive variable impedance control is proposed for position/force tracking of multi-robot cooperative manipulators. Based on this control approach, the multi-robot cooperative manipulator is able to track a dynamic desired force and compensate for the unknown trajectory deviations, which result from external disturbances and calibration errors. In the end, the developed control scheme is experimentally tested on a multi-robot setup which is composed of three ESTUN industrial manipulators by welding a pipe-contact-pipe object. The simulations and experimental results are strongly proved that the proposed approach can finish the welding task smoothly and achieve a good position/force tracking performance.


Author(s):  
Rafael Fierro ◽  
Justin Clark ◽  
Dean Hougen ◽  
Sesh Commuri

2005 ◽  
Vol 29 (2) ◽  
pp. 179-194
Author(s):  
P. Yuan ◽  
M. Moallem ◽  
R.V. Patel

This paper presents an online task-oriented scheduling method and an off-line scheduling algorithm that can be used for cooperative control of a distributed multi-robot manipulator system. Satisfaction of temporal deadlines and tasks-relative constraints are considered in this work. With the proposed algorithms, both the timing constraints and relative task dependencies can be satisfied when the worst-case execution time is unknown. The total execution time of the assembly tasks can be significantly improved compared with other known scheduling algorithms such as the First-In-First-Out and Round Robin scheduling methods. Experimental results are presented indicating that the proposed algorithm can be used for improving the performance of multi-robot systems in terms of timing and resource constraints.


Sign in / Sign up

Export Citation Format

Share Document