Neurodynamics-Based Model Predictive Control for Trajectory Tracking of Autonomous Underwater Vehicles

Author(s):  
Xinzhe Wang ◽  
Jun Wang
2018 ◽  
Vol 72 (2) ◽  
pp. 321-341 ◽  
Author(s):  
Zhen Hu ◽  
Daqi Zhu ◽  
Caicha Cui ◽  
Bing Sun

The trajectory tracking of Autonomous Underwater Vehicles (AUV) is an important research topic. However, in the traditional research into AUV trajectory tracking control, the AUV often follows human-set trajectories without obstacles, and trajectory planning and tracking are separated. Focusing on this separation, a trajectory re-planning controller based on Model Predictive Control (MPC) is designed and added into the trajectory tracking controller to form a new control system. Firstly, an obstacle avoidance function is set up for the design of an MPC trajectory re-planning controller, so that the re-planned trajectory produced by the re-planning controller can avoid obstacles. Then, the tracking controller in the MPC receives the re-planned trajectory and obtains the optimal tracking control law after calculating the object function with a Sequential Quadratic Programming (SQP) optimisation algorithm. Lastly, in a backstepping algorithm, the speed jump can be sharp while the MPC tracking controller can solve the speed jump problem. Simulation results of different obstacles and trajectories demonstrate the efficiency of the proposed MPC trajectory re-planning tracking control algorithm for AUVs.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 162 ◽  
Author(s):  
Feng Yao ◽  
Chao Yang ◽  
Mingjun Zhang ◽  
Yujia Wang

For long-term missions in complex seas, the onboard energy resources of autonomous underwater vehicles (AUVs) are limited. Thus, energy consumption reduction is an important aspect of the study of AUVs. This paper addresses energy consumption reduction using model predictive control (MPC) based on the state space model of AUVs for trajectory tracking control. Unlike the previous approaches, which use a cost function that consists of quadratic deviations of the predicted controlled output from the reference trajectory and quadratic input changes, a term of quadratic energy (i.e., quadratic input) is introduced into the cost function in this paper. Then, the MPC control law with the new cost function is constructed, and an analysis on the effect of the quadratic energy term on the stability is given. Finally, simulation results for depth tracking control are given to demonstrate the feasibility and effectiveness of the improved MPC on energy consumption optimization for AUVs.


Author(s):  
Sudirman Sudirman

Heading control of Autonomous Underwater Vehicle (AUV) using Model Predictive Control (MPC) gives a good performance. Varying the length of the horizon provides a variety of performance. This paper is made in order to find out how many optimal horizons are needed to obtain the highest efficiency of energy use in AUV. Test results show a positive correlation between the length of the horizon and the amount of energy used. The optimal horizon obtained is then tested on several different trajectories.


Sign in / Sign up

Export Citation Format

Share Document