An Affordable ECG and Respiration Monitoring System Based on Raspberry PI and ADAS1000: First Step towards Homecare Applications

Author(s):  
F. Abtahi ◽  
B. Aslamy ◽  
I. Boujabir ◽  
F. Seoane ◽  
K. Lindecrantz
2015 ◽  
Vol 1 (1) ◽  
pp. 37-45
Author(s):  
Irwansyah Irwansyah ◽  
Hendra Kusumah ◽  
Muhammad Syarif

Along with the times, recently there have been found tool to facilitate human’s work. Electronics is one of technology to facilitate human’s work. One of human desire is being safe, so that people think to make a tool which can monitor the surrounding condition without being monitored with people’s own eyes. Public awareness of the underground water channels currently felt still very little so frequent floods. To avoid the flood disaster monitoring needs to be done to underground water channels.This tool is controlled via a web browser. for the components used in this monitoring system is the Raspberry Pi technology where the system can take pictures in real time with the help of Logitech C170 webcam camera. web browser and Raspberry Pi make everyone can control the devices around with using smartphone, laptop, computer and ipad. This research is expected to be able to help the users in knowing the blockage on water flow and monitored around in realtime.


2021 ◽  
Vol 13 (15) ◽  
pp. 8182
Author(s):  
José María Portalo ◽  
Isaías González ◽  
Antonio José Calderón

Smart grids and smart microgrids (SMGs) require proper monitoring for their operation. To this end, measuring, data acquisition, and storage, as well as remote online visualization of real-time information, must be performed using suitable equipment. An experimental SMG is being deployed that combines photovoltaics and the energy carrier hydrogen through the interconnection of photovoltaic panels, electrolyser, fuel cell, and load around a voltage bus powered by a lithium battery. This paper presents a monitoring system based on open-source hardware and software for tracking the temperature of the photovoltaic generator in such an SMG. In fact, the increases in temperature in PV modules lead to a decrease in their efficiency, so this parameter needs to be measured in order to monitor and evaluate the operation. Specifically, the developed monitoring system consists of a network of digital temperature sensors connected to an Arduino microcontroller, which feeds the acquired data to a Raspberry Pi microcomputer. The latter is accessed by a cloud-enabled user/operator interface implemented in Grafana. The monitoring system is expounded and experimental results are reported to validate the proposal.


Author(s):  
Hemanth Kumar. R

Healthcare systems are a very important part of the economy of any country and for the public health. The IoT-based monitoring system for patients with paralysis, which helps to promote the health condition of a patient with paralysis, in addition to the day-to-day life. India has suffered a stroke, the incidence is much higher than that of the more developed countries, it is home to around 2.1 million Indians suffered from the boom of the (lame) per year. If a patient is suffering from a paralysis attack in all or any part of the body can be turned off in order to move in, which means that their movement is restricted and they can barely communicate with anyone at all, because they can't talk like a normal person. Raccoons will find it difficult to understand what they are saying, and help them deal with their day-to-day needs, such as food, water, etc.). At present, work is in progress on the review of the motion parameters on the legs, arms, and head of the paralytics. This paper investigates the development of an integrated and portable prototype is a model of a system for the monitoring of the various movements of the body, spinal cord injuries, with the help of sensors. The tests were carried out by placing the sensors on the head, arm, and leg of the paralyzed patient the data received from these sensors are sent to the raspberry pi 3 model. In the Android app, you'll receive a verbal warning, and if the patient is in need of help via Bluetooth, which, in turn, is connected to the raspberry pi.


Author(s):  
Wahyuni Kurniasih ◽  
Abdul Rakhman ◽  
Irma Salamah

The house is the most valuable asset, therefore security at home is also very important. Therefore a home security system is created that combines a microcontroller with an Android smartphone application. The microcontroller used is the Raspberry Pi which is equipped with a camera as a home security monitoring system and various sensors as detectors such as magnetic, PIR sensors and solenoids as automatic door locks. So if the sensors that are installed detect something at home, then the homeowner will immediately get a notification sent by the database to the smartphone application, and the homeowner can monitor the state of the house right then through photos and videos recorded by cameras that have been installed at home.


Author(s):  
Fransiscus Yudi Limpraptono ◽  
Eko Nurcahyo ◽  
Mochammad Ibrahim Ashari ◽  
Erkata Yandri ◽  
Yahya Jani

The increasing demand for electrical energy and the decreasing supply of fossil fuels in recent years have increased the cost of electrical energy. So that the culture of saving electrical energy is a habit that must be cultivated in the community. On the other hand, energy-saving behavior cannot be realized massively without a support system that can control energy use. With these concerns, it is necessary to develop a method that encourages a culture of saving electrical energy. This paper proposes a system that supports active energy efficiency methods that can support an energy-efficient culture. This system is an electric power monitoring system that is integrated with a smart electrical panel that continuously monitors the use of electrical energy and can control electrical loads automatically, record electricity usage, provide comprehensive reports and analyze energy usage. The method used to carry out this research is research and development. This research has produced a prototype of electrical power control and monitoring system that has a smart panel based on a raspberry PI 3 and PZEM-004t power energy meter. The monitoring system performs and executes automatic control of electrical loads. The system can also provide reports in the form of data monitoring in daily, weekly, monthly or annual period. From the test results, it can be concluded that the system can work well. This research is expected to contribute to providing a system that can support government efforts in saving energy.


Sign in / Sign up

Export Citation Format

Share Document