Shock Structure and Temperature Overshoot in Macroscopic Model of Mixtures

Author(s):  
Tommaso Ruggeri ◽  
Masaru Sugiyama
1983 ◽  
Vol 100 ◽  
pp. 145-146
Author(s):  
A. H. Nelson ◽  
T. Matsuda ◽  
T. Johns

Numerical calculations of spiral shocks in the gas discs of galaxies (1,2,3) usually assume that the disc is flat, i.e. the gas motion is purely horizontal. However there is abundant evidence that the discs of galaxies are warped and corrugated (4,5,6) and it is therefore of interest to consider the effect of the consequent vertical motion on the structure of spiral shocks. If one uses the tightly wound spiral approximation to calculate the gas flow in a vertical cut around a circular orbit (i.e the ⊝ -z plane, see Nelson & Matsuda (7) for details), then for a gas disc with Gaussian density profile in the z-direction and initially zero vertical velocity a doubly periodic spiral potential modulation produces the steady shock structure shown in Fig. 1. The shock structure is independent of z, and only a very small vertical motion appears with anti-symmetry about the mid-plane.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 955
Author(s):  
Damir Madjarević ◽  
Milana Pavić-Čolić ◽  
Srboljub Simić

The shock structure problem is studied for a multi-component mixture of Euler fluids described by the hyperbolic system of balance laws. The model is developed in the framework of extended thermodynamics. Thanks to the equivalence with the kinetic theory approach, phenomenological coefficients are computed from the linearized weak form of the collision operator. Shock structure is analyzed for a three-component mixture of polyatomic gases, and for various combinations of parameters of the model (Mach number, equilibrium concentrations and molecular mass ratios). The analysis revealed that three-component mixtures possess distinguishing features different from the binary ones, and that certain behavior may be attributed to polyatomic structure of the constituents. The multi-temperature model is compared with a single-temperature one, and the difference between the mean temperatures of the mixture are computed. Mechanical and thermal relaxation times are computed along the shock profiles, and revealed that the thermal ones are smaller in the case discussed in this study.


2005 ◽  
Vol 15 (11) ◽  
pp. 1667-1683 ◽  
Author(s):  
MIROSŁAW LACHOWICZ

In this paper two new mathematical models are proposed that correspond to a macroscopic model of tissue invasion of solid tumours, in terms of a system of reaction-diffusion-chemotaxis equations. The first model is defined at the micro-scale level of a large number of interacting individual entities, and is in terms of a linear (Markov) equation. The second model refers to the meso-scale level of description of test-entities and is given in terms of a bilinear Boltzmann-type equation. Mathematical relationships among these three possible descriptions are formulated. Explicit error estimates are given.


2013 ◽  
Vol 24 (01) ◽  
pp. 113-144 ◽  
Author(s):  
MARKUS AURADA ◽  
JENS M. MELENK ◽  
DIRK PRAETORIUS

We introduce a stabilized conforming mixed finite element method for a macroscopic model in micromagnetics. We show well-posedness of the discrete problem for higher order elements in two and three dimensions, develop a full a priori analysis for lowest order elements, and discuss the extension of the method to higher order elements. We introduce a residual-based a posteriori error estimator and present an adaptive strategy. Numerical examples illustrate the performance of the method.


Meccanica ◽  
1981 ◽  
Vol 16 (3) ◽  
pp. 149-156 ◽  
Author(s):  
A. M. Anile ◽  
A. Majorana

2001 ◽  
Vol 105 (1043) ◽  
pp. 9-16 ◽  
Author(s):  
S. B. Verma ◽  
E. Rathakrishnan

Abstract The shock-structure and the related acoustic field of underexpanded jets undergoes significant changes as the Mach number Mj is increased. The present investigation is carried out to study the effect of Mach number on an underexpanded 2:1 elliptic-slot jet. Experimental data are presented for fully expanded Mach numbers ranging from 1.3 to 2.0. It is observed that the ‘cross-over’ point at the end of the first cell at low Mach numbers gets replaced by a normal shock at a highly underexpanded condition resulting in the formation of a ‘barrel’ shock along the minor-axis side with a ‘bulb’ shock formed along the major-axis side. The above change in shock structure is accompanied by a related change in the acoustic field. The amplitude of fundamental frequency along the minor-axis side grows with Mj but falls beyond Mj = 1.75. Along the major-axis side, however, the fundamental frequency does not exist at low Mach numbers. It appears at Mj = 1.75 but then falls at Mj = 2.0. The related azimuthal directivity of overall noise levels (OASPL) shows significant changes with Mj.


Sign in / Sign up

Export Citation Format

Share Document