PSilhOuette: Towards an Optimal Number of Clusters Using a Nested Particle Swarm Approach for Liver CT Image Segmentation

Author(s):  
Abder-Rahman Ali ◽  
Micael S. Couceiro ◽  
Aboul Ella Hassenian
Author(s):  
Min Chen ◽  
Simone A. Ludwig

Abstract Fuzzy clustering is a popular unsupervised learning method that is used in cluster analysis. Fuzzy clustering allows a data point to belong to two or more clusters. Fuzzy c-means is the most well-known method that is applied to cluster analysis, however, the shortcoming is that the number of clusters need to be predefined. This paper proposes a clustering approach based on Particle Swarm Optimization (PSO). This PSO approach determines the optimal number of clusters automatically with the help of a threshold vector. The algorithm first randomly partitions the data set within a preset number of clusters, and then uses a reconstruction criterion to evaluate the performance of the clustering results. The experiments conducted demonstrate that the proposed algorithm automatically finds the optimal number of clusters. Furthermore, to visualize the results principal component analysis projection, conventional Sammon mapping, and fuzzy Sammon mapping were used


2010 ◽  
Vol 30 (8) ◽  
pp. 1995-1998 ◽  
Author(s):  
Shi-bing ZHOU ◽  
Zhen-yuan XU ◽  
Xu-qing TANG

2018 ◽  
Vol 14 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Lin Zhang ◽  
Yanling He ◽  
Huaizhi Wang ◽  
Hui Liu ◽  
Yufei Huang ◽  
...  

Background: RNA methylome has been discovered as an important layer of gene regulation and can be profiled directly with count-based measurements from high-throughput sequencing data. Although the detailed regulatory circuit of the epitranscriptome remains uncharted, clustering effect in methylation status among different RNA methylation sites can be identified from transcriptome-wide RNA methylation profiles and may reflect the epitranscriptomic regulation. Count-based RNA methylation sequencing data has unique features, such as low reads coverage, which calls for novel clustering approaches. <P><P> Objective: Besides the low reads coverage, it is also necessary to keep the integer property to approach clustering analysis of count-based RNA methylation sequencing data. <P><P> Method: We proposed a nonparametric generative model together with its Gibbs sampling solution for clustering analysis. The proposed approach implements a beta-binomial mixture model to capture the clustering effect in methylation level with the original count-based measurements rather than an estimated continuous methylation level. Besides, it adopts a nonparametric Dirichlet process to automatically determine an optimal number of clusters so as to avoid the common model selection problem in clustering analysis. <P><P> Results: When tested on the simulated system, the method demonstrated improved clustering performance over hierarchical clustering, K-means, MClust, NMF and EMclust. It also revealed on real dataset two novel RNA N6-methyladenosine (m6A) co-methylation patterns that may be induced directly by METTL14 and WTAP, which are two known regulatory components of the RNA m6A methyltransferase complex. <P><P> Conclusion: Our proposed DPBBM method not only properly handles the count-based measurements of RNA methylation data from sites of very low reads coverage, but also learns an optimal number of clusters adaptively from the data analyzed. <P><P> Availability: The source code and documents of DPBBM R package are freely available through the Comprehensive R Archive Network (CRAN): https://cran.r-project.org/web/packages/DPBBM/.


2021 ◽  
Vol 91 ◽  
pp. 107024 ◽  
Author(s):  
Xiwang Xie ◽  
Weidong Zhang ◽  
Huadeng Wang ◽  
Lingqiao Li ◽  
Zhengyun Feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document