Performance Indices for Parallel Robots Considering Motion/Force Transmissibility

Author(s):  
Fugui Xie ◽  
Xin-Jun Liu ◽  
Jie Li
2020 ◽  
Vol 12 (4) ◽  
Author(s):  
Qizhi Meng ◽  
Fugui Xie ◽  
Xin-Jun Liu ◽  
Yukio Takeda

Abstract Motion/force transmissibility is an essential property reflecting the kinematic performance of parallel robots. Research on this performance of the single-platform parallel robots (SPPRs) has long been concerned and studied. In contrast, although many innovations and applications of the high-speed articulated-platform parallel robots (APPRs) have been presented, few studies on their motion/force transmissibility have been reported. This paper deals with the motion/force transmissibility analysis of high-speed parallel robots with articulated platforms. A modified output transmission index (MOTI) for the high-speed parallel robots with articulated platforms is proposed based on a newly defined concept of equivalent transmission wrench screw. Furthermore, by having an insight into the instantaneous relative motion inside the mobile platform, a medial transmission index (MTI) is proposed to evaluate its internal motion/force transmissibility. Based on these foundations, the local transmission index (LTI) is redefined as the minimum value of the input, modified output, and medial transmission indices. Under the framework of the above performance indices, motion/force transmissibility analysis of two typical high-speed articulated-platform parallel robots, i.e., Heli4 and Par4, are presented. The proposed indices are excepted to be applied to the optimal design of high-speed parallel robots with articulated platforms.


2021 ◽  
pp. 460-469
Author(s):  
Xin Yuan ◽  
Qizhi Meng ◽  
Fugui Xie ◽  
Zhenguo Nie ◽  
Xin-Jun Liu

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Xiang Chen ◽  
Xin-Jun Liu ◽  
Fugui Xie

Singularity is an inherent characteristic of parallel robots and is also a typical mathematical problem in engineering application. In general, to identify singularity configuration, the singular solution in mathematics should be derived. This work introduces an alternative approach to the singularity identification of lower-mobility parallel robots considering the motion/force transmissibility and constrainability. The theory of screws is used as the mathematic tool to define the transmission and constraint indices of parallel robots. The singularity is hereby classified into four types concerning both input and output members of a parallel robot, that is, input transmission singularity, output transmission singularity, input constraint singularity, and output constraint singularity. Furthermore, we take several typical parallel robots as examples to illustrate the process of singularity analysis. Particularly, the input and output constraint singularities which are firstly proposed in this work are depicted in detail. The results demonstrate that the method can not only identify all possible singular configurations, but also explain their physical meanings. Therefore, the proposed approach is proved to be comprehensible and effective in solving singularity problems in parallel mechanisms.


2012 ◽  
Vol 4 (4) ◽  
Author(s):  
Xin-Jun Liu ◽  
Chao Wu ◽  
Jinsong Wang

Singularity analysis is one of the most important issues in the field of parallel manipulators. An approach for singularity analysis should be able to not only identify all possible singularities but also explain their physical meanings. Since a parallel manipulator is always out of control at a singularity and its neighborhood, it should work far from singular configurations. However, how to measure the closeness between a pose and a singular configuration is still a challenging problem. This paper presents a new approach for singularity analysis of parallel manipulators by taking into account motion/force transmissibility. Several performance indices are introduced to measure the closeness to singularities. By using these indices, a uniform “metric” can be found to represent the closeness to singularities for different types of nonredundant parallel manipulators.


Author(s):  
Bin Mei ◽  
Fugui Xie ◽  
Xin-Jun Liu ◽  
Xuan Luo

3-PP(Pa)S robot is a six degrees of freedom (DOFs) parallel mechanism with 2-DOF active planar joint. For the design and application of the 3-PP(Pa)S robot, it is essential to investigate the motion/force transmissibility of the robot. But previous studies of the motion/force transmissibility have mainly focused on the parallel robots with 1-DOF active joints and thus cannot be directly applied to the 3-PP(Pa)S robot. In this paper, input twist subspace, transmission wrench subspace and output twist subspace are investigated to build mathematical models of the twists and wrenches corresponding to the 2-DOF active planar joint. Afterwards, based on the previous established frame of the local transmission index, some extended performance evaluation indices are defined to describe the motion/force transmissibility of the 3-PP(Pa)S robot. On this basis, the singularity and motion/force transmissibility of this mechanism are investigated. The motion/force transmissibility evaluation method is meaningful and applicable for the 3-PP(Pa)S parallel robot with 2-DOF active joints and can be further applied to other mechanisms with multi-DOF active joints.


Author(s):  
Andrew Johnson ◽  
Xianwen Kong

Development of a new parallel manipulator can be very time consuming due to the traditional method of producing kinematic, dynamic and static calculation models and then evaluating them to determine aspects of the manipulator’s performance indices such as the mechanism’s workspace and singularity analysis. By extending the virtual chain approach to the type synthesis of parallel manipulators, this paper proposes a virtual-chain approach to the workspace analysis of parallel manipulators. This method is illustrated by producing and evaluating the workspace of several parallel robots including the well known DELTA robot by utilising the three-dimensional CAD software SolidWorks to produce a virtual prototype of a manipulator with an embedded virtual chain. The virtual chain represents the motion pattern of a manipulator’s end-effector and is very useful in the production of a graphical representation of the workspace of the manipulator. Using this approach, the link interferences and transmission indices can be easily taken into consideration in determining the workspace of a parallel manipulator.


2017 ◽  
Vol 9 (3) ◽  
Author(s):  
Saeed Abdolshah ◽  
Damiano Zanotto ◽  
Giulio Rosati ◽  
Sunil K. Agrawal

Adaptive cable-driven parallel robots are a special subclass of cable-driven systems in which the locations of the pulley blocks are modified as a function of the end-effector pose to obtain optimal values of given performance indices within a target workspace. Due to their augmented kinematic redundancy, such systems enable larger workspace volume and higher performance compared to traditional designs featuring the same number of cables. Previous studies have introduced a systematic method to optimize design and trajectory planning of the moving pulley-blocks for a given performance index. In this paper, we study the motions of the pulley blocks that optimize two performance indices simultaneously: stiffness and dexterity. Specifically, we present a method to determine the pulley blocks motions that guarantee ideal dexterity with the best feasible elastic stiffness, as well as those that guarantee isotropic elastic stiffness with the best feasible dexterity. We demonstrate the proposed approach on some practical cases of planar adaptive cable-driven parallel robots.


Sign in / Sign up

Export Citation Format

Share Document