Real-Time Event Detection for Energy Data Streams

Author(s):  
Aqeel H. Kazmi ◽  
Michael J. O’Grady ◽  
Gregory M. P. O’Hare
1998 ◽  
Vol 88 (1) ◽  
pp. 95-106 ◽  
Author(s):  
Mitchell Withers ◽  
Richard Aster ◽  
Christopher Young ◽  
Judy Beiriger ◽  
Mark Harris ◽  
...  

Abstract Digital algorithms for robust detection of phase arrivals in the presence of stationary and nonstationary noise have a long history in seismology and have been exploited primarily to reduce the amount of data recorded by data logging systems to manageable levels. In the present era of inexpensive digital storage, however, such algorithms are increasingly being used to flag signal segments in continuously recorded digital data streams for subsequent processing by automatic and/or expert interpretation systems. In the course of our development of an automated, near-real-time, waveform correlation event-detection and location system (WCEDS), we have surveyed the abilities of such algorithms to enhance seismic phase arrivals in teleseismic data streams. Specifically, we have considered envelopes generated by energy transient (STA/LTA), Z-statistic, frequency transient, and polarization algorithms. The WCEDS system requires a set of input data streams that have a smooth, low-amplitude response to background noise and seismic coda and that contain peaks at times corresponding to phase arrivals. The algorithm used to generate these input streams from raw seismograms must perform well under a wide range of source, path, receiver, and noise scenarios. Present computational capabilities allow the application of considerably more robust algorithms than have been historically used in real time. However, highly complex calculations can still be computationally prohibitive for current workstations when the number of data streams become large. While no algorithm was clearly optimal under all source, receiver, path, and noise conditions tested, an STA/LTA algorithm incorporating adaptive window lengths controlled by nonstationary seismogram spectral characteristics was found to provide an output that best met the requirements of a global correlation-based event-detection and location system.


Author(s):  
LAKSHMI PRANEETHA

Now-a-days data streams or information streams are gigantic and quick changing. The usage of information streams can fluctuate from basic logical, scientific applications to vital business and money related ones. The useful information is abstracted from the stream and represented in the form of micro-clusters in the online phase. In offline phase micro-clusters are merged to form the macro clusters. DBSTREAM technique captures the density between micro-clusters by means of a shared density graph in the online phase. The density data in this graph is then used in reclustering for improving the formation of clusters but DBSTREAM takes more time in handling the corrupted data points In this paper an early pruning algorithm is used before pre-processing of information and a bloom filter is used for recognizing the corrupted information. Our experiments on real time datasets shows that using this approach improves the efficiency of macro-clusters by 90% and increases the generation of more number of micro-clusters within in a short time.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1924
Author(s):  
Patrick Seeling ◽  
Martin Reisslein ◽  
Frank H. P. Fitzek

The Tactile Internet will require ultra-low latencies for combining machines and humans in systems where humans are in the control loop. Real-time and perceptual coding in these systems commonly require content-specific approaches. We present a generic approach based on deliberately reduced number accuracy and evaluate the trade-off between savings achieved and errors introduced with real-world data for kinesthetic movement and tele-surgery. Our combination of bitplane-level accuracy adaptability with perceptual threshold-based limits allows for great flexibility in broad application scenarios. Combining the attainable savings with the relatively small introduced errors enables the optimal selection of a working point for the method in actual implementations.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Liang Zhao

This paper presents a novel abnormal data detecting algorithm based on the first order difference method, which could be used to find out outlier in building energy consumption platform real time. The principle and criterion of methodology are discussed in detail. The results show that outlier in cumulative power consumption could be detected by our method.


Sign in / Sign up

Export Citation Format

Share Document