HDL and the Amphipathic Helix

Author(s):  
Jere P. Segrest
Keyword(s):  
Microbiology ◽  
2004 ◽  
Vol 150 (7) ◽  
pp. 2055-2068 ◽  
Author(s):  
Daniel V. Zurawski ◽  
Murry A. Stein

SseA, a key Salmonella virulence determinant, is a small, basic pI protein encoded within the Salmonella pathogenicity island 2 and serves as a type III secretion system chaperone for SseB and SseD. Both SseA partners are subunits of the surface-localized translocon module that delivers effectors into the host cell; SseB is predicted to compose the translocon sheath and SseD is a putative translocon pore subunit. In this study, SseA molecular interactions with its partners were characterized further. Yeast two-hybrid screens indicate that SseA binding requires a C-terminal domain within both partners. An additional central domain within SseD was found to influence binding. The SseA-binding region within SseB was found to encompass a predicted amphipathic helix of a type participating in coiled-coil interactions that are implicated in the assembly of translocon sheaths. Deletions that impinge upon this putative coiled-coiled domain prevent SseA binding, suggesting that SseA occupies a portion of the coiled-coil. SseA occupancy of this motif is envisioned to be sufficient to prevent premature SseB self-association inside bacteria. Domain mapping on the chaperone was also performed. A deletion of the SseA N-terminus, or site-directed mutations within this region, allowed stabilization of SseB, but its export was disrupted. Therefore, the N-terminus of SseA provides a function that is essential for SseB export, but dispensable for partner binding and stabilization.


2021 ◽  
Vol 120 (3) ◽  
pp. 19a
Author(s):  
Alican Gulsevin ◽  
Jens Meiler

2015 ◽  
Vol 28 (6) ◽  
pp. 675-688 ◽  
Author(s):  
Masayoshi Hashimoto ◽  
Ken Komatsu ◽  
Ryo Iwai ◽  
Takuya Keima ◽  
Kensaku Maejima ◽  
...  

Systemic necrosis is one of the most severe symptoms caused by plant RNA viruses. Recently, systemic necrosis has been suggested to have similar features to a defense response referred to as the hypersensitive response (HR), a form of programmed cell death. In virus-infected plant cells, host intracellular membrane structures are changed dramatically for more efficient viral replication. However, little is known about whether this replication-associated membrane modification is the cause of the symptoms. In this study, we identified an amino-terminal amphipathic helix of the helicase encoded by Radish mosaic virus (RaMV) (genus Comovirus) as an elicitor of cell death in RaMV-infected plants. Cell death caused by the amphipathic helix had features similar to HR, such as SGT1-dependence. Mutational analyses and inhibitor assays using cerulenin demonstrated that the amphipathic helix–induced cell death was tightly correlated with dramatic alterations in endoplasmic reticulum (ER) membrane structures. Furthermore, the cell death–inducing activity of the amphipathic helix was conserved in Cowpea mosaic virus (genus Comovirus) and Tobacco ringspot virus (genus Nepovirus), both of which are classified in the family Secoviridae. Together, these results indicate that ER membrane modification associated with viral intracellular replication may be recognized to prime defense responses against plant viruses.


2021 ◽  
Vol 221 (2) ◽  
Author(s):  
Daniel Crosby ◽  
Melissa R. Mikolaj ◽  
Sarah B. Nyenhuis ◽  
Samantha Bryce ◽  
Jenny E. Hinshaw ◽  
...  

ER network formation depends on membrane fusion by the atlastin (ATL) GTPase. In humans, three paralogs are differentially expressed with divergent N- and C-terminal extensions, but their respective roles remain unknown. This is partly because, unlike Drosophila ATL, the fusion activity of human ATLs has not been reconstituted. Here, we report successful reconstitution of fusion activity by the human ATLs. Unexpectedly, the major splice isoforms of ATL1 and ATL2 are each autoinhibited, albeit to differing degrees. For the more strongly inhibited ATL2, autoinhibition mapped to a C-terminal α-helix is predicted to be continuous with an amphipathic helix required for fusion. Charge reversal of residues in the inhibitory domain strongly activated its fusion activity, and overexpression of this disinhibited version caused ER collapse. Neurons express an ATL2 splice isoform whose sequence differs in the inhibitory domain, and this form showed full fusion activity. These findings reveal autoinhibition and alternate splicing as regulators of atlastin-mediated ER fusion.


2014 ◽  
Vol 106 (2) ◽  
pp. 505a
Author(s):  
Alexander J. Sodt ◽  
Richard W. Pastor

2015 ◽  
Vol 24 (3) ◽  
pp. 426-429 ◽  
Author(s):  
Shenstone Huang ◽  
Bryan Green ◽  
Megan Thompson ◽  
Richard Chen ◽  
Jessica Thomaston ◽  
...  

2006 ◽  
Vol 364 (1-2) ◽  
pp. 256-259 ◽  
Author(s):  
Ching-Wan Lam ◽  
Yuet-Ping Yuen ◽  
Wai-Fun Cheng ◽  
Yan-Wo Chan ◽  
Sui-Fan Tong

2019 ◽  
Vol 218 (4) ◽  
pp. 1128-1137 ◽  
Author(s):  
Kevin S. Cannon ◽  
Benjamin L. Woods ◽  
John M. Crutchley ◽  
Amy S. Gladfelter

Cell shape is well described by membrane curvature. Septins are filament-forming, GTP-binding proteins that assemble on positive, micrometer-scale curvatures. Here, we examine the molecular basis of curvature sensing by septins. We show that differences in affinity and the number of binding sites drive curvature-specific adsorption of septins. Moreover, we find septin assembly onto curved membranes is cooperative and show that geometry influences higher-order arrangement of septin filaments. Although septins must form polymers to stay associated with membranes, septin filaments do not have to span micrometers in length to sense curvature, as we find that single-septin complexes have curvature-dependent association rates. We trace this ability to an amphipathic helix (AH) located on the C-terminus of Cdc12. The AH domain is necessary and sufficient for curvature sensing both in vitro and in vivo. These data show that curvature sensing by septins operates at much smaller length scales than the micrometer curvatures being detected.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Javier Romero-García ◽  
Xevi Biarnés ◽  
Antoni Planas

Sign in / Sign up

Export Citation Format

Share Document