curved membranes
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 30)

H-INDEX

17
(FIVE YEARS 4)

2021 ◽  
Vol 22 (24) ◽  
pp. 13600
Author(s):  
Meewhi Kim ◽  
Ilya Bezprozvanny

Proteolytic processing of amyloid precursor protein (APP) plays a critical role in the pathogenesis of Alzheimer’s disease (AD). Sequential cleavage of APP by β and γ secretases leads to the generation of Aβ40 (non-amyloidogenic) and Aβ42 (amyloidogenic) peptides. Presenilin-1 (PS1) or presenilin-2 (PS2) play the role of a catalytic subunit of γ-secretase. Multiple familial AD (FAD) mutations in APP, PS1, or PS2 result in an increased Aβ42:Aβ40 ratio and the accumulation of toxic Aβ42 oligomers and plaques in patient brains. In this study, we perform molecular modeling of the APP complex with γ-secretase and analyze potential effects of FAD mutations in APP and PS1. We noticed that all FAD mutations in the APP transmembrane domain are predicted to cause an increase in the local disorder of its secondary structure. Based on structural analysis of known γ-secretase structures, we propose that APP can form a complex with γ-secretase in 2 potential conformations—M1 and M2. In conformation, the M1 transmembrane domain of APP forms a contact with the perimembrane domain that follows transmembrane domain 6 (TM6) in the PS1 structure. In conformation, the M2 transmembrane domain of APP forms a contact with transmembrane domain 7 (TM7) in the PS1 structure. By analyzing the effects of PS1-FAD mutations on the local protein disorder index, we discovered that these mutations increase the conformational flexibility of M2 and reduce the conformational flexibility of M1. Based on these results, we propose that M2 conformation, but not M1 conformation, of the γ secretase complex with APP leads to the amyloidogenic (Aβ42-generating) processing of APP. Our model predicts that APP processing in M1 conformation is favored by curved membranes, such as the membranes of early endosomes. In contrast, APP processing in M2 conformation is likely to be favored by relatively flat membranes, such as membranes of late endosomes and plasma membranes. These predictions are consistent with published biochemical analyses of APP processing at different subcellular locations. Our results also suggest that specific inhibitors of Aβ42 production could be potentially developed by selectively targeting the M2 conformation of the γ secretase complex with APP.


Author(s):  
Meewhi Kim ◽  
Ilya Bezprozvanny

Proteolytic processing of amyloid precursor protein (APP) plays a critical role in pathogenesis of Azheimer’s disease (AD). Sequential cleavage of APP by β and γ secretases leads to generation of Aβ40 (non-amyloidogenic) and Aβ42 (amyloidogenic) peptides. Presenilin-1 (PS1) or presenilin-2 (PS2) pay a role of catalytic subunit of γ-secretase. Multiple familial AD (FAD) mutations in APP, PS1, or PS2 result in increased Aβ42:Aβ40 ratio and accumulation of toxic Aβ42 oligomers and plaques in patient brains. In this study we performed molecular modeling of APP complex with γ-secretase and analyzed potential effects of FAD mutations in APP and PS1. We noticed that all FAD mutations in APP transmembrane domain are predicted to cause an increase in the local disorder of its secondary structure. Based on structural analysis of known γ-secretase structures we proposed that APP can form a complex with γ-secretase in 2 potential conformations – M1 and M2. In conformation M1 transmembrane domain of APP forms a contact with perimembrane domain that follows the transmembrane domain 6 (TM6) in PS1 structure. In conformation M2 transmembrane domain of APP forms a contact with transmembrane domain 7 (TM7) in PS1 structure. By analyzing effects of PS1-FAD mutations on local protein disorder index, we discovered that these mutations increase conformational flexibility of M2 and reduce conformational flexibility of M1. Based on these results we proposed that M2 conformation, but not M1 conformation, of γ secretase complex with APP leads to amyloidogenic (Aβ42-generating) processing of APP. Our model predicts that APP processing in M1 conformation is favored by a curved membranes, such as membranes of early endosomes. In contrast, APP processing in M2 conformation is likely to be favored by a relatively flat memranes such as membranes of late endosomes and plasma membrane. These predictions are consistent with published biochemical analysis of APP processing at different subcellular locations. Our results suggest that specific inhibitors of Aβ42 production could be potentially developed by selectively targeting M2 conformation of γ secretase complex with APP.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anabel-Lise Le Roux ◽  
Caterina Tozzi ◽  
Nikhil Walani ◽  
Xarxa Quiroga ◽  
Dobryna Zalvidea ◽  
...  

AbstractIn many physiological situations, BAR proteins reshape membranes with pre-existing curvature (templates), contributing to essential cellular processes. However, the mechanism and the biological implications of this reshaping process remain unclear. Here we show, both experimentally and through modelling, that BAR proteins reshape low curvature membrane templates through a mechanochemical phase transition. This phenomenon depends on initial template shape and involves the co-existence and progressive transition between distinct local states in terms of molecular organization (protein arrangement and density) and membrane shape (template size and spherical versus cylindrical curvature). Further, we demonstrate in cells that this phenomenon enables a mechanotransduction mode, in which cellular stretch leads to the mechanical formation of membrane templates, which are then reshaped into tubules by BAR proteins. Our results demonstrate the interplay between membrane mechanics and BAR protein molecular organization, integrating curvature sensing and generation in a comprehensive framework with implications for cell mechanical responses.


2021 ◽  
Author(s):  
Balázs Fábián ◽  
Matti Javanainen

Curved membranes are abundant and functionally relevant in living matter, yet they have eluded computational studies due to methodological limitations. With multiple approaches available for setting up simulations on such curved membranes, there is a growing need for efficient and versatile tools to analyze their outcomes. Here, we present CurD, a freely available tool for analyzing the diffusion of membrane constituents along curved surfaces. The tool efficiently uses the Vertex-oriented Triangle Propagation algorithm to compute geodesic distances significantly faster than conventional implementations of path-finding algorithms, while providing a friendly command-line interface. With CurD, we resolve the effects of curvature and lipid packing densities on the diffusion of lipids on two curved membranes---one with only mean curvature and another with both Mean and Gaussian curvature. We find that Gaussian curvature plays a surprisingly small role, whereas mean curvature or packing of lipid headgroups largely dictates their mobility.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Damián Lobato-Márquez ◽  
Jingwei Xu ◽  
Gizem Özbaykal Güler ◽  
Adaobi Ojiakor ◽  
Martin Pilhofer ◽  
...  

AbstractSeptins are cytoskeletal proteins that assemble into hetero-oligomeric complexes and sense micron-scale membrane curvature. During infection with Shigella flexneri, an invasive enteropathogen, septins restrict actin tail formation by entrapping bacteria in cage-like structures. Here, we reconstitute septin cages in vitro using purified recombinant septin complexes (SEPT2-SEPT6-SEPT7), and study how these recognize bacterial cells and assemble on their surface. We show that septin complexes recognize the pole of growing Shigella cells. An amphipathic helix domain in human SEPT6 enables septins to sense positively curved membranes and entrap bacterial cells. Shigella strains lacking lipopolysaccharide components are more efficiently entrapped in septin cages. Finally, cryo-electron tomography of in vitro cages reveals how septins assemble as filaments on the bacterial cell surface.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Kaushik Inamdar ◽  
Feng-Ching Tsai ◽  
Rayane Dibsy ◽  
Aurore de Poret ◽  
John Manzi ◽  
...  

During HIV-1 particle formation, the requisite plasma membrane curvature is thought to be solely driven by the retroviral Gag protein. Here, we reveal that the cellular I-BAR protein IRSp53 is required for the progression of HIV-1 membrane curvature to complete particle assembly. SiRNA-mediated knockdown of IRSp53 gene expression induces a decrease in viral particle production and a viral bud arrest at half completion. Single molecule localization microscopy at the cell plasma membrane shows a preferential localization of IRSp53 around HIV-1 Gag assembly sites. In addition, we observe the presence of IRSp53 in purified HIV-1 particles. Finally, HIV-1 Gag protein preferentially localizes to curved membranes induced by IRSp53 I-BAR domain on giant unilamellar vesicles. Overall, our data reveal a strong interplay between IRSp53 I-BAR and Gag at membranes during virus assembly. This highlights IRSp53 as a crucial host factor in HIV-1 membrane curvature and its requirement for full HIV-1 particle assembly.


2021 ◽  
Author(s):  
Kaushik Inamdar ◽  
Feng-Ching Tsai ◽  
Aurore de Poret ◽  
Rayane Dibsy ◽  
John Manzi ◽  
...  

During HIV-1 particle formation, the requisite plasma membrane curvature is thought to be solely driven by the retroviral Gag protein. Here, we reveal that the cellular I-BAR protein IRSp53 is required for the progression of HIV-1 membrane curvature to complete particle assembly. Partial gene editing of IRSp53 induces a decrease in viral particle production and a viral bud arrest at half completion. Single molecule localization microscopy at the cell plasma membrane shows a preferential localization of IRSp53 around HIV-1 Gag assembly sites. In addition, we observe the presence of IRSp53 in purified HIV-1 particles. Finally, HIV-1 Gag protein localizes preferentially to IRSp53 I-BAR domain induced curved membranes on giant unilamellar vesicles. Overall, our data reveal a strong interplay between IRSp53 I-BAR and Gag at membranes during virus assembly. This highlights IRSp53 as a crucial host factor in HIV-1 membrane curvature and its requirement for full HIV-1 particle assembly.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yansheng Ye ◽  
Erin R. Tyndall ◽  
Van Bui ◽  
Zhenyuan Tang ◽  
Yan Shen ◽  
...  

AbstractDuring autophagy the enzyme Atg3 catalyzes the covalent conjugation of LC3 to the amino group of phosphatidylethanolamine (PE) lipids, which is one of the key steps in autophagosome formation. Here, we have demonstrated that an N-terminal conserved region of human Atg3 (hAtg3) communicates information from the N-terminal membrane curvature-sensitive amphipathic helix (AH), which presumably targets the enzyme to the tip of phagophore, to the C-terminally located catalytic core for LC3–PE conjugation. Mutations in the putative communication region greatly reduce or abolish the ability of hAtg3 to catalyze this conjugation in vitro and in vivo, and alter the membrane-bound conformation of the wild-type protein, as reported by NMR. Collectively, our results demonstrate that the N-terminal conserved region of hAtg3 works in concert with its geometry-selective AH to promote LC3–PE conjugation only on the target membrane, and substantiate the concept that highly curved membranes drive spatial regulation of the autophagosome biogenesis during autophagy.


Soft Matter ◽  
2021 ◽  
Author(s):  
Yiben Fu ◽  
Wade F Zeno ◽  
Jeanne Stachowiak ◽  
Margaret E. Johnson

Protein domains, such as ENTH (Epsin N-terminal homology) and BAR (bin/amphiphysin/rvs), contain amphipathic helices that drive preferential binding to curved membranes. However, predicting how the physical parameters of these domains...


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Naoki Tamemoto ◽  
Hiroshi Noguchi

Abstract Shapes of biological membranes are dynamically regulated in living cells. Although membrane shape deformation by proteins at thermal equilibrium has been extensively studied, nonequilibrium dynamics have been much less explored. Recently, chemical reaction propagation has been experimentally observed in plasma membranes. Thus, it is important to understand how the reaction–diffusion dynamics are modified on deformable curved membranes. Here, we investigated nonequilibrium pattern formation on vesicles induced by mechanochemical feedback between membrane deformation and chemical reactions, using dynamically triangulated membrane simulations combined with the Brusselator model. We found that membrane deformation changes stable patterns relative to those that occur on a non-deformable curved surface, as determined by linear stability analysis. We further found that budding and multi-spindle shapes are induced by Turing patterns, and we also observed the transition from oscillation patterns to stable spot patterns. Our results demonstrate the importance of mechanochemical feedback in pattern formation on deforming membranes.


Sign in / Sign up

Export Citation Format

Share Document