Modular Lipschitzian and Contractive Maps

Author(s):  
Vyacheslav V. Chistyakov
Keyword(s):  
2018 ◽  
Vol 33 (2) ◽  
pp. 177
Author(s):  
Gutti Venkata Ravindranadh Babu ◽  
Tolera Mosissa Dula

In this paper, we introduce almost generalized $(\alpha,\beta)$-$(\psi, \varphi)$-contractive maps, and we prove some new xed point results for this class of mappings in b-metric spaces. We provide examples in support of our results. Our results extend/generalize the results of Dutta and Choudhury [8] and Yamaod and Sintunavarat [13].


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Nawab Hussain ◽  
Vahid Parvaneh ◽  
Jamal Rezaei Roshan

We unify the concepts ofG-metric, metric-like, andb-metric to define new notion of generalizedb-metric-like space and discuss its topological and structural properties. In addition, certain fixed point theorems for two classes ofG-α-admissible contractive mappings in such spaces are obtained and some new fixed point results are derived in corresponding partially ordered space. Moreover, some examples and an application to the existence of a solution for the first-order periodic boundary value problem are provided here to illustrate the usability of the obtained results.


Fractals ◽  
2020 ◽  
Vol 28 (08) ◽  
pp. 2040002 ◽  
Author(s):  
SAMIHA BELMOR ◽  
F. JARAD ◽  
T. ABDELJAWAD ◽  
MANAR A. ALQUDAH

In this research work, we investigate the existence of solutions for a class of nonlinear boundary value problems for fractional-order differential inclusion with respect to another function. Endpoint theorem for [Formula: see text]-weak contractive maps is the main tool in determining our results. An example is presented in aim to illustrate the results.


2017 ◽  
Vol 2019 (22) ◽  
pp. 6819-6886 ◽  
Author(s):  
Raphaël Clouâtre ◽  
Christopher Ramsey

Abstract We develop a completely bounded counterpart to the noncommutative Choquet boundary of an operator space. We show how the class of completely bounded linear maps is too large to accommodate our purposes. To overcome this obstacle, we isolate the subset of completely bounded linear maps admitting a dilation of the same norm that is multiplicative on the associated C*-algebra. We view such maps as analogs of the familiar unital completely contractive maps, and we exhibit many of their structural properties. Of particular interest to us are those maps that are extremal with respect to a natural dilation order. We establish the existence of extremals and show that they have a certain unique extension property. In particular, they give rise to *-homomorphisms that we use to associate to any representation of an operator space an entire scale of C*-envelopes. We conjecture that these C*-envelopes are all *-isomorphic and verify this in some important cases.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1033 ◽  
Author(s):  
Antonio Francisco Roldán López de Roldán López de Hierro ◽  
Naseer Shahzad

Simulation functions were introduced by Khojasteh et al. as a method to extend several classes of fixed point theorems by a simple condition. After that, many researchers have amplified the knowledge of such kind of contractions in several ways. R-functions, ( R , S ) -contractions and ( A , S ) -contractions can be considered as approaches in this direction. A common characteristic of the previous kind of contractive maps is the fact that they are defined by a strict inequality. In this manuscript, we show the advantages of replacing such inequality with a weaker one, involving a family of more general auxiliary functions. As a consequence of our study, we show that not only the above-commented contractions are particular cases, but also another classes of contractive maps correspond to this new point of view.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 143
Author(s):  
Chayut Kongban ◽  
Poom Kumam ◽  
Juan Martínez-Moreno ◽  
Kanokwan Sitthithakerngkiet

The main purpose in this paper is to define the modification form of random α -admissible and random α - ψ -contractive maps. We establish new random fixed point theorems in complete separable metric spaces. The interpretation of our results provide the main theorems of Tchier and Vetro (2017) as directed corollaries. In addition, some applications to second order random differential equations are presenred here to interpret the usability of the obtained results.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Wei-Shih Du

We first establish some existence results concerning approximate coincidence point properties and approximate fixed point properties for various types of nonlinear contractive maps in the setting of cone metric spaces and general metric spaces. From these results, we present some new coincidence point and fixed point theorems which generalize Berinde-Berinde's fixed point theorem, Mizoguchi-Takahashi's fixed point theorem, and some well-known results in the literature.


Sign in / Sign up

Export Citation Format

Share Document