Life Cycle Versus Carbon Footprint Analysis for Construction Materials

2015 ◽  
pp. 95-106 ◽  
Author(s):  
Efrosini Giama
2018 ◽  
Vol 10 (12) ◽  
pp. 4688
Author(s):  
Marina Nikolić Topalović ◽  
Milenko Stanković ◽  
Goran Ćirović ◽  
Dragan Pamučar

Research was conducted to indicate the impact of the increased flow of thermal insulation materials on the environment due to the implementation of the new regulations on energy efficiency of buildings. The regulations on energy efficiency of buildings in Serbia came into force on 30 September 2012 for all new buildings as well as for buildings in the process of rehabilitation and reconstruction. For that purpose, the carbon footprint was analyzed in three scenarios (BS, S1 and S2) for which the quantities of construction materials and processes were calculated. The life cycle analysis (LCA), which is the basis for analyzing the carbon life cycle (LCACO2), was used in this study. Carbon Calculator was used for measuring carbon footprint, and URSA program to calculate the operational energy. This study was done in two phases. In Phase 1, the embodied carbon was measured to evaluate short-term effects of the implementation of the new regulations. Phase 2 included the first 10 years of building exploitation to evaluate the long-term effects of the new regulations. The analysis was done for the period of 10 years, further adjustments to the regulations regarding energy efficiency of the buildings in Serbia are expected in accordance with EU directives. The study shows that, in the short-run, Scenario BS has the lowest embodied carbon. In the long-run, after 3.66 years, Scenario S2 becomes a better option regarding the impact on the environment. The study reveals the necessity to include embodied carbon together with the whole life carbon to estimation the impact of a building on the environment.


2020 ◽  
Vol 32 ◽  
pp. 101657 ◽  
Author(s):  
Pramodit Adhikari ◽  
Hussam Mahmoud ◽  
Aiwen Xie ◽  
Kathrina Simonen ◽  
Bruce Ellingwood

2017 ◽  
Vol 20 (1) ◽  
pp. 65-80 ◽  
Author(s):  
Jani Das ◽  
Ajit Paul Abraham ◽  
Prakash C. Ghosh ◽  
Rangan Banerjee

Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2987 ◽  
Author(s):  
Mohammad Davoud Heidari ◽  
Michael Lawrence ◽  
Pierre Blanchet ◽  
Ben Amor

Interest in intrinsically low-energy construction materials is becoming mainstream, and bio-based materials form a key part of that group of materials. The goal of this study was to analyse the environmental impact of applying a sol-gel coating on hemp shiv, in order to improve the durability of this innovative bio-based material, using a regionalised LCA model, taking into account regional specific peculiarities. This study analysed the environmental performance of using bio-based materials in the building envelope compared with traditional synthetic construction materials, and compared the impact of a regionalised approach with a global approach. The carbon footprint of treated hemp shiv in a wall with a U-value of 0.15 W/m2.K was compared to untreated hempcrete and a reference cavity wall with the same U-value. Considering the environmental damage caused by the production of hemp shiv, nitrogen fertiliser was the hotspot. The LCA results showed that, using innovative bio-based materials in construction, treated hemp shiv with sol-gel can decrease the carbon footprint of a building envelope through carbon sequestration. Using the more accurate site-specific information in life cycle inventory and impact assessment methods will result in more consistent and site-appropriate environmental results for decision-making.


Sign in / Sign up

Export Citation Format

Share Document