Bio-production of Hydrogen and Methane Through Anaerobic Digestion Stages

Author(s):  
Chiara Patriarca ◽  
Elena De Luca ◽  
Claudio Felici ◽  
Luigia Lona ◽  
Valentina Mazzurco Miritana ◽  
...  
2008 ◽  
Vol 99 (11) ◽  
pp. 5078-5084 ◽  
Author(s):  
Heguang Zhu ◽  
Aaron Stadnyk ◽  
Michel Béland ◽  
Peter Seto

2014 ◽  
Vol 69 (11) ◽  
pp. 2200-2209 ◽  
Author(s):  
A. Giuliano ◽  
L. Zanetti ◽  
F. Micolucci ◽  
C. Cavinato

A two-stage thermophilic anaerobic digestion process for the concurrent production of hydrogen and methane through the treatment of the source-sorted organic fraction of municipal solid waste was carried out over a long-term pilot scale experience. Two continuously stirred tank reactors were operated for about 1 year. The results showed that stable production of bio-hythane without inoculum treatment could be obtained. The pH of the dark fermentation reactor was maintained in the optimal range for hydrogen-producing bacteria activity through sludge recirculation from a methanogenic reactor. An average specific bio-hythane production of 0.65 m3 per kg of volatile solids fed was achieved when the recirculation flow was controlled through an evaporation unit in order to avoid inhibition problems for both microbial communities. Microbial analysis indicated that dominant bacterial species in the dark fermentation reactor are related to the Lactobacillus family, while the population of the methanogenic reactor was mainly composed of Defluviitoga tunisiensis. The archaeal community of the methanogenic reactor shifted, moving from Methanothermobacter-like to Methanobacteriales and Methanosarcinales, the latter found also in the dark fermentation reactor when a considerable methane production was detected.


2006 ◽  
Vol 53 (8) ◽  
pp. 271-279 ◽  
Author(s):  
H.N. Gavala ◽  
I.V. Skiadas ◽  
B.K. Ahring ◽  
G. Lyberatos

The present study investigates the thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp; b) anaerobic bio-production of hydrogen from the olive pulp; c) subsequent anaerobic treatment of the hydrogen-effluent with the simultaneous production of methane; and d) development of a mathematical model able to describe the anaerobic digestion of the olive pulp and the effluent of hydrogen producing process. Both continuous and batch experiments were performed. The hydrogen potential of the olive pulp amounted to 1.6 mmole H2 per g TS. The methane potential of the raw olive pulp and hydrogen-effluent was as high as 19 mmole CH4 per g TS suggesting that: a) olive pulp is a suitable substrate for methane production; and b) biohydrogen production can be very efficiently coupled with a subsequent step for methane production.


2007 ◽  
Vol 98 (14) ◽  
pp. 2641-2651 ◽  
Author(s):  
M COONEY ◽  
N MAYNARD ◽  
C CANNIZZARO ◽  
J BENEMANN

2011 ◽  
Author(s):  
Θεόφιλος Βλάσσης

This study focused on the valorization of glycerol which is an important by-product of the biodiesel industry corresponding to 10 % of the produced biodiesel amount. This fact contributed to the increase of the global production of biodiesel, to a point at which the industries which traditionally consumed glycerol could not absorb. This situation should be overcome through new outlets on glycerol exploitation. Usually, glycerol is treated by chemical processes in order to form new chemical compounds.On the other side, biochemical processes like anaerobic digestion and fermentation or the technology of microbial fuel cells could potentially transform glycerol into methane, hydrogen and electric current respectively. These processes, which are the subject of this Ph.D, are preferable to their chemical counterparts due to the low energy demand and reduced environmental pollution.The anaerobic digestion process was conducted in a conventional CSTR reactor and in a high rate reactor, the PABR. The experiments dealt with the effect of glycerol concentration on the methane production rate. The obtained results showed that the CSTR could not withstand organic loadings above 0.25 g COD/L/d, however PABR operated at organic loading 10 times higher than CSTR such as 3 g COD/L/d and resulted to a methane production rate of 0.982 ± 0.089 L/L/d. A model was developed for both the CSTR and the PABR digesters. Fermentative hydrogen production was conducted successfully in batch reactors. The effect of the initial glycerol concentration and initial pH on hydrogen production was studied. A maximum yield, 27.3 mL H2/ g COD glycerol, was obtained when glycerol concentration was 8.3 g COD/L and the pH 6.5. Moreover, the fermentation of glycerol took place in a CSTR in order to investigate the continuous production of hydrogen. Hydrogen production was unstable, possibly due to the washout of proper biomass from the reactor.For electricity generation from glycerol, an H-type microbial fuel cell was used in batch mode. The effect of the initial glycerol on the electric current was studied. A maximum Coulombic efficiency (CE) 34.09% was obtained at a glycerol concentration of 3.2 g COD/L. A further increase of glycerol drove to a drop of the CE. Probably, this happened since the electrochemical microorganisms were inhibited by the high glycerol concentration.


2020 ◽  
pp. 18-29
Author(s):  
Milen Borisov ◽  
Dencho Denchev ◽  
Ivan Simeonov

The aim of this study is to implement a mathematical model to simulate the dynamic behaviour of a two-stage anaerobic digestion process for simultaneous production of hydrogen and methane. The process is carried out in two connected continuously stirred bioreactors. The proposed model is developed by reducing the well known IWA Anaerobic Digester Model No 1 (ADM1). In the present study the original model concept was adapted and applied to replicate a two-stage process. The proposed model involves 13 ODEs for the 1st stage and 7 ODEs for the 2nd stage. The numerical coefficient values in the model are taken from specified literature and adapted to the case of wheat straw AD. Important input-output static characteristics and existence of maxima of the input-output static characteristics concerning the biohydrogen and biomethane production in function of the control variable (dilution rate) are presented. Supposing that both bioreactors are operating nearby these maxima the optimal ratio of the working volumes was obtained. Numerical simulations using a specially elaborated web-based software environment are presented to demonstrate the dynamic behavior of the model solutions.


2021 ◽  
Vol 2021 (2/2021) ◽  
pp. 12-25
Author(s):  
Nicolai Christov ◽  
Haoping Wang ◽  
Ivan Simeonov

Anaerobic digestion (AD) is a biotechnological process, in which microorganisms degrade organic matter under anaerobic conditions to produce biogas. It has long been known that the two main species (acidogenic and methanogenic) in the community of microorganisms in AD differ in many aspects and the optimal conditions for their growth and development are different. Therefore, in AD in a single bioreactor (BR) (single-phase process), the optimal conditions are selected taking into account the slow-growing methanogens at the expense of fast-growing acidogens, which affects the efficiency of the whole process. This has led in recent years to the development of two-stage AD (TSAD), in which processes are divided into a cascade of two separate BRs. It is known that this division of the processes into two consecutive BRs leads to significantly higher energy yields for the two-phase system (H2 + CH4), compared to the traditional single-stage CH4 production process. In our previous studies different mathematical models of the TSAD have been developed. It was shown that in both BRs the input-output characteristics have a clear maximum, which allows the yields to increase significantly if operations are provided around the maximum points. However, in order to maintain the sustainability of the biogas plants work, it is necessary to introduce automatic control with sophisticated extremum seeking control (ESC) algorithms. This paper presents the pioneering research on ESC of AD process with production of hydrogen and methane. This research has been realized by the Department of Biotechnology at The Stephan Angeloff Institute of Microbiology (SAIM) and the French-Chinese Laboratory on Automatic Control and Signal Processing (LaFCAS), in collaboration with the Laboratory of Signals and Systems (L2S) at the French National Center of Scientific Research CNRS.


Author(s):  
Salma Aathika Abdur Rawoof ◽  
P. Senthil Kumar ◽  
Dai-Viet N. Vo ◽  
Sivanesan Subramanian

2009 ◽  
Vol 33 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Froylán M. Espinoza-Escalante ◽  
Carlos Pelayo-Ortíz ◽  
José Navarro-Corona ◽  
Yolanda González-García ◽  
André Bories ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document