scholarly journals MATHEMATICAL MODELLING OF A TWO-STAGE ANAEROBIC DIGESTION PROCESS WITH HYDROGEN AND METHANE PRODUCTION USING ADM1

2020 ◽  
pp. 18-29
Author(s):  
Milen Borisov ◽  
Dencho Denchev ◽  
Ivan Simeonov

The aim of this study is to implement a mathematical model to simulate the dynamic behaviour of a two-stage anaerobic digestion process for simultaneous production of hydrogen and methane. The process is carried out in two connected continuously stirred bioreactors. The proposed model is developed by reducing the well known IWA Anaerobic Digester Model No 1 (ADM1). In the present study the original model concept was adapted and applied to replicate a two-stage process. The proposed model involves 13 ODEs for the 1st stage and 7 ODEs for the 2nd stage. The numerical coefficient values in the model are taken from specified literature and adapted to the case of wheat straw AD. Important input-output static characteristics and existence of maxima of the input-output static characteristics concerning the biohydrogen and biomethane production in function of the control variable (dilution rate) are presented. Supposing that both bioreactors are operating nearby these maxima the optimal ratio of the working volumes was obtained. Numerical simulations using a specially elaborated web-based software environment are presented to demonstrate the dynamic behavior of the model solutions.

1986 ◽  
Vol 18 (7-8) ◽  
pp. 239-248 ◽  
Author(s):  
Sung Ryong Ha ◽  
Dwang Ho Lee ◽  
Sang Eun Lee

Laboratory scale experiments were conducted to develop a mathematical model for the anaerobic digestion of a mixture of night soil and septic tank sludge. The optimum mixing ratio by volume between night soil and septic tank sludge was found to be 7:3. Due to the high solids content in the influent waste, mixed-liquor volatile suspended solids (MLVSS) was not considered to be a proper parameter for biomass concentration, therefore, the active biomass concentration was estimated based on deoxyribonucleic acid (DNA) concentration in the reactor. The weight ratio between acidogenic bacteria and methanogenic bacteria in the mixed culture of a well-operated anaerobic digester was approximately 3:2. The proposed model indicates that the amount of volatile acid produced and the gas production rate can be expressed as a function of hydraulic residence time (HRT). The kinetic constants of the two phases of the anaerobic digestion process were determined, and a computer was used to simulate results using the proposed model for the various operating parameters, such as BOD5 and volatile acid concentrations in effluent, biomass concentrations and gas production rates. These were consistent with the experimental data.


2019 ◽  
Vol 130 ◽  
pp. 1108-1115 ◽  
Author(s):  
Dalal E. Algapani ◽  
Wei Qiao ◽  
Marina Ricci ◽  
Davide Bianchi ◽  
Simon M. Wandera ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document