Invariant-Based Production Control Reviewed: Mixing Hierarchical and Heterarchical Control in Flexible Job Shop Environments

Author(s):  
Henning Blunck ◽  
Julia Bendul
2021 ◽  
Vol 11 (6) ◽  
pp. 2783
Author(s):  
Zuzana Červeňanská ◽  
Pavel Važan ◽  
Martin Juhás ◽  
Bohuslava Juhásová

The utilization of a specific priority rule in scheduling operations in flexible job shop systems strongly influences production goals. In a context of production control in real practice, production performance indicators are evaluated always en bloc. This paper addresses the multi-criteria evaluating five selected conflicting production objectives via scalar simulation-based optimization related to applied priority rule. It is connected to the discrete-event simulation model of a flexible job shop system with partially interchangeable workplaces, and it investigates the impact of three selected priority rules—FIFO (First In First Out), EDD (Earliest Due Date), and STR (Slack Time Remaining). In the definition of the multi-criteria objective function, two scalarization methods—Weighted Sum Method and Weighted Product Method—are employed in the optimization model. According to the observations, EDD and STR priority rules outperformed the FIFO rule regardless of the type of applied multi-criteria method for the investigated flexible job shop system. The results of the optimization experiments also indicate that the evaluation via applying multi-criteria optimization is relevant for identifying effective solutions in the design space when the specific priority rule is applied in the scheduling operations.


2015 ◽  
Vol 135 (6) ◽  
pp. 713-720
Author(s):  
Wan-Ling Li ◽  
Tomohiro Murata ◽  
Muhammad Hafidz Fazli bin Md Fauadi

2019 ◽  
Vol 24 (3) ◽  
pp. 80 ◽  
Author(s):  
Prasert Sriboonchandr ◽  
Nuchsara Kriengkorakot ◽  
Preecha Kriengkorakot

This research project aims to study and develop the differential evolution (DE) for use in solving the flexible job shop scheduling problem (FJSP). The development of algorithms were evaluated to find the solution and the best answer, and this was subsequently compared to the meta-heuristics from the literature review. For FJSP, by comparing the problem group with the makespan and the mean relative errors (MREs), it was found that for small-sized Kacem problems, value adjusting with “DE/rand/1” and exponential crossover at position 2. Moreover, value adjusting with “DE/best/2” and exponential crossover at position 2 gave an MRE of 3.25. For medium-sized Brandimarte problems, value adjusting with “DE/best/2” and exponential crossover at position 2 gave a mean relative error of 7.11. For large-sized Dauzere-Peres and Paulli problems, value adjusting with “DE/best/2” and exponential crossover at position 2 gave an MRE of 4.20. From the comparison of the DE results with other methods, it was found that the MRE was lower than that found by Girish and Jawahar with the particle swarm optimization (PSO) method (7.75), which the improved DE was 7.11. For large-sized problems, it was found that the MRE was lower than that found by Warisa (1ST-DE) method (5.08), for which the improved DE was 4.20. The results further showed that basic DE and improved DE with jump search are effective methods compared to the other meta-heuristic methods. Hence, they can be used to solve the FJSP.


2021 ◽  
Vol 180 ◽  
pp. 787-796
Author(s):  
Pedro Coelho ◽  
Ana Pinto ◽  
Samuel Moniz ◽  
Cristovão Silva

Sign in / Sign up

Export Citation Format

Share Document