A FPGA Based High-Speed Binocular Active Vision System for Tracking Circle-Shaped Target

Author(s):  
Zhengyang Du ◽  
Hong Lu ◽  
Haowei Yuan ◽  
Wenqiang Zhang ◽  
Chen Chen ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Noel Cortés-Pérez ◽  
Luz Abril Torres-Méndez

A mirror-based active system capable of changing the view’s direction of a pre-existing fixed camera is presented. The aim of this research work is to extend the perceptual tracking capabilities of an underwater robot without altering its structure. The ability to control the view’s direction allows the robot to explore its entire surroundings without any actual displacement, which can be useful for more effective motion planning and for different navigation strategies, such as object tracking and/or obstacle evasion, which are of great importance for natural preservation in environments as complex and fragile as coral reefs. Active vision systems based on mirrors had been used mainly in terrestrial platforms to capture the motion of fast projectiles using high-speed cameras of considerable size and weight, but they had not been used on underwater platforms. In this sense, our approach incorporates a lightweight design adapted to an underwater robot using affordable and easy-access technology (i.e., 3D printing). Our active system consists of two arranged mirrors, one of which remains static in front of the robot’s camera, while the orientation of the second mirror is controlled by two servomotors. Object tracking is performed by using only the pixels contained on the homography of a defined area in the active mirror. HSV color space is used to reduce lighting change effects. Since color and geometry information of the tracking object are previously known, a window filter is applied over the H-channel for color blobs detection, then, noise is filtered and the object’s centroid is estimated. If the object is lost, a Kalman filter is applied to predict its position. Finally, with this information, an image PD controller computes the servomotor articular values. We have carried out experiments in real environments, testing our active vision system in an object-tracking application where an artificial object is manually displaced on the periphery of the robot and the mirror system is automatically reconfigured to keep such object focused by the camera, having satisfactory results in real time for detecting objects of low complexity and in poor lighting conditions.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1572 ◽  
Author(s):  
Akio Namiki ◽  
Keitaro Shimada ◽  
Yusuke Kin ◽  
Idaku Ishii

High-speed recognition of the shape of a target object is indispensable for robots to perform various kinds of dexterous tasks in real time. In this paper, we propose a high-speed 3-D sensing system with active target-tracking. The system consists of a high-speed camera head and a high-speed projector, which are mounted on a two-axis active vision system. By measuring a projected coded pattern, 3-D measurement at a rate of 500 fps was achieved. The measurement range was increased as a result of the active tracking, and the shape of the target was accurately observed even when it moved quickly. In addition, to obtain the position and orientation of the target, 500 fps real-time model matching was achieved.


2018 ◽  
Vol 23 (1) ◽  
pp. 179-189 ◽  
Author(s):  
Tadayoshi Aoyama ◽  
Makoto Chikaraishi ◽  
Akimasa Fujiwara ◽  
Liang Li ◽  
Mingjun Jiang ◽  
...  

2013 ◽  
Vol 437 ◽  
pp. 840-844 ◽  
Author(s):  
Xiao Gang Liu ◽  
Bing Zhao

This paper use the passive vision system through high-speed camera collects molten pool images; and then according to the frequency domain characteristics of the weld pool image Butterworth low-pass filter; gradient method for image enhancement obtained after pretreatment. Research Roberts, Sobel, Prewitt, Log, Zerocross, and Canny 6 both traditional differential operator edge detection processing results. Through comparison and analysis of choosing threshold for [0.1, 0. Canny operator can get the ideal molten pool edge character, for subsequent welding molten pool defect recognition provides favorable conditions.


Author(s):  
CLAUDIO S. PINHANEZ

A vision system was built using a behavior-based model, the subsumption architecture. The so-called active eye moves the camera’s axis through the environment, detecting areas with high concentration of edges, with the help of a kind of saccadic movement. The design and implementation process is detailed in the article, paying particular attention to the fovea-like sensor structure which enables the active eye to efficiently use local information to control its movements. Numerical measures for the eye’s behavior were developed, and applied to evaluate the incremental building process and the effects of the saccadic movements on the whole system. A higher level behavior was also implemented, with the purpose of detecting long straight edges in the image, producing pictures similar to hand drawings. Robustness and efficiency problems are addressed at the end of the paper. The results seem to prove that interesting behaviors can be achieved using simple vision methods and algorithms, if their results are properly interconnected and timed.


Sign in / Sign up

Export Citation Format

Share Document