Exploring Social Network Information for Solving Cold Start in Product Recommendation

Author(s):  
Chaozhuo Li ◽  
Fang Wang ◽  
Yang Yang ◽  
Zhoujun Li ◽  
Xiaoming Zhang
2014 ◽  
Author(s):  
Yu-Yang Huang ◽  
Rui Yan ◽  
Tsung-Ting Kuo ◽  
Shou-De Lin

2021 ◽  
Vol 13 (2) ◽  
pp. 47-53
Author(s):  
M. Abubakar ◽  
K. Umar

Product recommendation systems are information filtering systems that uses ratings and predictions to make new product suggestions. There are many product recommendation system techniques in existence, these include collaborative filtering, content based filtering, knowledge based filtering, utility based filtering and demographic based filtering. Collaborative filtering techniques is known to be the most popular product recommendation system technique. It utilizes user’s previous product ratings to make new product suggestions. However collaborative filtering have some weaknesses, which include cold start, grey sheep issue, synonyms issue. However the major weakness of collaborative filtering approaches is cold user problem. Cold user problem is the failure of product recommendation systems to make product suggestions for new users. Literature investigation had shown that cold user problem could be effectively addressed using active learning technique of administering personalized questionnaire. Unfortunately, the result of personalized questionnaire technique could contain some user preference uncertainties where the product database is too large (as in Amazon). This research work addresses the weakness of personalized questionnaire technique by applying uncertainty reduction strategy to improve the result obtained from administering personalized questionnaire. In our experimental design we perform four different experiments; Personalized questionnaire approach of solving user based coldstart was implemented using Movielens dataset of 1M size, Personalized questionnaire approach of solving user based cold start was implemented using Movielens dataset of 10M size, Personalized questionnaire with uncertainty reduction was implemented using Movielens dataset of 1M size, and also Personalized  questionnaire with uncertainty reduction was implemented using Movielens dataset of 10M size. The experimental result shows RMSE, Precision and Recall improvement of 0.21, 0.17 and 0.18 respectively in 1M dataset and 0.17, 0.14 and 0.20 in 10M dataset respectively over personalized questionnaire.


2018 ◽  
pp. 823-862
Author(s):  
Ming Yang ◽  
William H. Hsu ◽  
Surya Teja Kallumadi

In this chapter, the authors survey the general problem of analyzing a social network in order to make predictions about its behavior, content, or the systems and phenomena that generated it. They begin by defining five basic tasks that can be performed using social networks: (1) link prediction; (2) pathway and community formation; (3) recommendation and decision support; (4) risk analysis; and (5) planning, especially causal interventional planning. Next, they discuss frameworks for using predictive analytics, availability of annotation, text associated with (or produced within) a social network, information propagation history (e.g., upvotes and shares), trust, and reputation data. They also review challenges such as imbalanced and partial data, concept drift especially as it manifests within social media, and the need for active learning, online learning, and transfer learning. They then discuss general methodologies for predictive analytics involving network topology and dynamics, heterogeneous information network analysis, stochastic simulation, and topic modeling using the abovementioned text corpora. They continue by describing applications such as predicting “who will follow whom?” in a social network, making entity-to-entity recommendations (person-to-person, business-to-business [B2B], consumer-to-business [C2B], or business-to-consumer [B2C]), and analyzing big data (especially transactional data) for Customer Relationship Management (CRM) applications. Finally, the authors examine a few specific recommender systems and systems for interaction discovery, as part of brief case studies.


2013 ◽  
pp. 103-120
Author(s):  
Giuseppe Berio ◽  
Antonio Di Leva ◽  
Mounira Harzallah ◽  
Giovanni M. Sacco

The exploitation and integration of social network information in a competence reference model (CRAI, Competence, Resource, Aspect, Individual) are discussed. The Social-CRAI model, which extends CRAI to social networks, provides an effective solution to this problem and is discussed in detail. Finally, dynamic taxonomies, a model supporting explorative conceptual search, are introduced and their use in the context of the Social-CRAI model for exploring retrieved information available in social networks is discussed. A real-world example is provided.


2020 ◽  
Vol 386 ◽  
pp. 208-220 ◽  
Author(s):  
Yijia Zhang ◽  
Zhenkun Shi ◽  
Wanli Zuo ◽  
Lin Yue ◽  
Shining Liang ◽  
...  

2011 ◽  
pp. 149-175 ◽  
Author(s):  
Yutaka Matsuo ◽  
Junichiro Mori ◽  
Mitsuru Ishizuka

This chapter describes social network mining from the Web. Since the end of the 1990s, several attempts have been made to mine social network information from e-mail messages, message boards, Web linkage structure, and Web content. In this chapter, we specifically examine the social network extraction from the Web using a search engine. The Web is a huge source of information about relations among persons. Therefore, we can build a social network by merging the information distributed on the Web. The growth of information on the Web, in addition to the development of a search engine, opens new possibilities to process the vast amounts of relevant information and mine important structures and knowledge.


Sign in / Sign up

Export Citation Format

Share Document