Real-Time Tear Film Classification Through Cost-Based Feature Selection

Author(s):  
Verónica Bolón-Canedo ◽  
Beatriz Remeseiro ◽  
Noelia Sánchez-Maroño ◽  
Amparo Alonso-Betanzos
2019 ◽  
Vol 9 (22) ◽  
pp. 4833 ◽  
Author(s):  
Ardo Allik ◽  
Kristjan Pilt ◽  
Deniss Karai ◽  
Ivo Fridolin ◽  
Mairo Leier ◽  
...  

The aim of this study was to develop an optimized physical activity classifier for real-time wearable systems with the focus on reducing the requirements on device power consumption and memory buffer. Classification parameters evaluated in this study were the sampling frequency of the acceleration signal, window length of the classification fragment, and the number of classification features, found with different feature selection methods. For parameter evaluation, a decision tree classifier was created based on the acceleration signals recorded during tests, where 25 healthy test subjects performed various physical activities. Overall average F1-score achieved in this study was about 0.90. Similar F1-scores were achieved with the evaluated window lengths of 5 s (0.92 ± 0.02) and 3 s (0.91 ± 0.02), while classification performance with 1 s were lower (0.87 ± 0.02). Tested sampling frequencies of 50 Hz, 25 Hz, and 13 Hz had similar results with most classified activity types, with an exception of outdoor cycling, where differences were significant. Using forward sequential feature selection enabled the decreasing of the number of features from initial 110 features to about 12 features without lowering the classification performance. The results of this study have been used for developing more efficient real-time physical activity classifiers.


2017 ◽  
Vol 7 (9) ◽  
pp. 884 ◽  
Author(s):  
Teng Wang ◽  
Juequan Chen ◽  
Xiangdong Gao ◽  
Yuxin Qin

Author(s):  
Siu-Yeung Cho ◽  
Teik-Toe Teoh ◽  
Yok-Yen Nguwi

Facial expression recognition is a challenging task. A facial expression is formed by contracting or relaxing different facial muscles on human face that results in temporally deformed facial features like wide-open mouth, raising eyebrows or etc. The challenges of such system have to address with some issues. For instances, lighting condition is a very difficult problem to constraint and regulate. On the other hand, real-time processing is also a challenging problem since there are so many facial features to be extracted and processed and sometimes, conventional classifiers are not even effective in handling those features and produce good classification performance. This chapter discusses the issues on how the advanced feature selection techniques together with good classifiers can play a vital important role of real-time facial expression recognition. Several feature selection methods and classifiers are discussed and their evaluations for real-time facial expression recognition are presented in this chapter. The content of this chapter is a way to open-up a discussion about building a real-time system to read and respond to the emotions of people from facial expressions.


Author(s):  
Seonho Kim ◽  
Jungjoon Kim ◽  
Hong-Woo Chun

Interest in research involving health-medical information analysis based on artificial intelligence, especially for deep learning techniques, has recently been increasing. Most of the research in this field has been focused on searching for new knowledge for predicting and diagnosing disease by revealing the relation between disease and various information features of data. These features are extracted by analyzing various clinical pathology data, such as EHR (electronic health records), and academic literature using the techniques of data analysis, natural language processing, etc. However, still needed are more research and interest in applying the latest advanced artificial intelligence-based data analysis technique to bio-signal data, which are continuous physiological records, such as EEG (electroencephalography) and ECG (electrocardiogram). Unlike the other types of data, applying deep learning to bio-signal data, which is in the form of time series of real numbers, has many issues that need to be resolved in preprocessing, learning, and analysis. Such issues include leaving feature selection, learning parts that are black boxes, difficulties in recognizing and identifying effective features, high computational complexities, etc. In this paper, to solve these issues, we provide an encoding-based Wave2vec time series classifier model, which combines signal-processing and deep learning-based natural language processing techniques. To demonstrate its advantages, we provide the results of three experiments conducted with EEG data of the University of California Irvine, which are a real-world benchmark bio-signal dataset. After converting the bio-signals (in the form of waves), which are a real number time series, into a sequence of symbols or a sequence of wavelet patterns that are converted into symbols, through encoding, the proposed model vectorizes the symbols by learning the sequence using deep learning-based natural language processing. The models of each class can be constructed through learning from the vectorized wavelet patterns and training data. The implemented models can be used for prediction and diagnosis of diseases by classifying the new data. The proposed method enhanced data readability and intuition of feature selection and learning processes by converting the time series of real number data into sequences of symbols. In addition, it facilitates intuitive and easy recognition, and identification of influential patterns. Furthermore, real-time large-capacity data analysis is facilitated, which is essential in the development of real-time analysis diagnosis systems, by drastically reducing the complexity of calculation without deterioration of analysis performance by data simplification through the encoding process.


2020 ◽  
Author(s):  
Ricardo Ramirez ◽  
Ian Michael Soukup ◽  
Rafael Tapia ◽  
Carlos A. Cardona ◽  
Michael Sandford Boudreaux ◽  
...  

2006 ◽  
Author(s):  
D. Frank Hsu ◽  
Damian M. Lyons ◽  
Jizhou Ai

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Noura AlNuaimi ◽  
Mohammad Mehedy Masud ◽  
Mohamed Adel Serhani ◽  
Nazar Zaki

Organizations in many domains generate a considerable amount of heterogeneous data every day. Such data can be processed to enhance these organizations’ decisions in real time. However, storing and processing large and varied datasets (known as big data) is challenging to do in real time. In machine learning, streaming feature selection has always been considered a superior technique for selecting the relevant subset features from highly dimensional data and thus reducing learning complexity. In the relevant literature, streaming feature selection refers to the features that arrive consecutively over time; despite a lack of exact figure on the number of features, numbers of instances are well-established. Many scholars in the field have proposed streaming-feature-selection algorithms in attempts to find the proper solution to this problem. This paper presents an exhaustive and methodological introduction of these techniques. This study provides a review of the traditional feature-selection algorithms and then scrutinizes the current algorithms that use streaming feature selection to determine their strengths and weaknesses. The survey also sheds light on the ongoing challenges in big-data research.


2019 ◽  
Vol 16 (8) ◽  
pp. 3603-3607 ◽  
Author(s):  
Shraddha Khonde ◽  
V. Ulagamuthalvi

Considering current network scenario hackers and intruders has become a big threat today. As new technologies are emerging fast, extensive use of these technologies and computers, what plays an important role is security. Most of the computers in network can be easily compromised with attacks. Big issue of concern is increase in new type of attack these days. Security to the sensitive data is very big threat to deal with, it need to consider as high priority issue which should be addressed immediately. Highly efficient Intrusion Detection Systems (IDS) are available now a days which detects various types of attacks on network. But we require the IDS which is intelligent enough to detect and analyze all type of new threats on the network. Maximum accuracy is expected by any of this intelligent intrusion detection system. An Intrusion Detection System can be hardware or software that analyze and monitors all activities of network to detect malicious activities happened inside the network. It also informs and helps administrator to deal with malicious packets, which if enters in network can harm more number of computers connected together. In our work we have implemented an intellectual IDS which helps administrator to analyze real time network traffic. IDS does it by classifying packets entering into the system as normal or malicious. This paper mainly focus on techniques used for feature selection to reduce number of features from KDD-99 dataset. This paper also explains algorithm used for classification i.e., Random Forest which works with forest of trees to classify real time packet as normal or malicious. Random forest makes use of ensembling techniques to give final output which is derived by combining output from number of trees used to create forest. Dataset which is used while performing experiments is KDD-99. This dataset is used to train all trees to get more accuracy with help of random forest. From results achieved we can observe that random forest algorithm gives more accuracy in distributed network with reduced false alarm rate.


Sign in / Sign up

Export Citation Format

Share Document