Locality-Sensitive Hashing for Distributed Privacy-Preserving Collaborative Filtering: An Approach and System Architecture

Author(s):  
Alexander Smirnov ◽  
Andrew Ponomarev
Author(s):  
Jun Wang ◽  
Jin Chao ◽  
Qiang Tang ◽  
Zhe Liu ◽  
Aung Mi Mi Khin

2021 ◽  
Vol 18 (11) ◽  
pp. 42-60
Author(s):  
Ting Bao ◽  
Lei Xu ◽  
Liehuang Zhu ◽  
Lihong Wang ◽  
Ruiguang Li ◽  
...  

2021 ◽  
Vol 14 (2) ◽  
pp. 26
Author(s):  
Na Li ◽  
Lianguan Huang ◽  
Yanling Li ◽  
Meng Sun

In recent years, with the development of the Internet, the data on the network presents an outbreak trend. Big data mining aims at obtaining useful information through data processing, such as clustering, clarifying and so on. Clustering is an important branch of big data mining and it is popular because of its simplicity. A new trend for clients who lack of storage and computational resources is to outsource the data and clustering task to the public cloud platforms. However, as datasets used for clustering may contain some sensitive information (e.g., identity information, health information), simply outsourcing them to the cloud platforms can't protect the privacy. So clients tend to encrypt their databases before uploading to the cloud for clustering. In this paper, we focus on privacy protection and efficiency promotion with respect to k-means clustering, and we propose a new privacy-preserving multi-user outsourced k-means clustering algorithm which is based on locality sensitive hashing (LSH). In this algorithm, we use a Paillier cryptosystem encrypting databases, and combine LSH to prune off some unnecessary computations during the clustering. That is, we don't need to compute the Euclidean distances between each data record and each clustering center. Finally, the theoretical and experimental results show that our algorithm is more efficient than most existing privacy-preserving k-means clustering.


2014 ◽  
Vol 610 ◽  
pp. 717-721 ◽  
Author(s):  
Yan Gao ◽  
Jing Bo Xia ◽  
Jing Jing Ji ◽  
Ling Ma

— Among algorithms in recommendation system, Collaborative Filtering (CF) is a popular one. However, the CF methods can’t guarantee the safety of the user rating data which cause private preserving issue. In general, there are four kinds of methods to solve private preserving: Perturbation, randomization, swapping and encryption. In this paper, we mimic algorithms which attack the privacy-preserving methods with randomized perturbation techniques. After leaking part of rating history of a customer, we can infer this customer’s other rating history. At the end, we propose an algorithm to enhance the system so as to avoid being attacked.


2020 ◽  
Vol 4 (2) ◽  
pp. 133-147
Author(s):  
Zhizhao Zhang ◽  
Tianzhi Yang ◽  
Yuan Liu

Purpose The purpose of this work is to bridge FL and blockchain technology through designing a blockchain-based smart agent system architecture and applying in FL. and blockchain technology through designing a blockchain-based smart agent system architecture and applying in FL. FL is an emerging collaborative machine learning technique that trains a model across multiple devices or servers holding private data samples without exchanging their data. The locally trained results are aggregated by a centralized server in a privacy-preserving way. However, there is an assumption where the centralized server is trustworthy, which is impractical. Fortunately, blockchain technology has opened a new era of data exchange among trustless strangers because of its decentralized architecture and cryptography-supported techniques. Design/methodology/approach In this study, the author proposes a novel design of a smart agent inspired by the smart contract concept. Specifically, based on the proposed smart agent, a fully decentralized, privacy-preserving and fair deep learning blockchain-FL framework is designed, where the agent network is consistent with the blockchain network and each smart agent is a participant in the FL task. During the whole training process, both the data and the model are not at the risk of leakage. Findings A demonstration of the proposed architecture is designed to train a neural network. Finally, the implementation of the proposed architecture is conducted in the Ethereum development, showing the effectiveness and applicability of the design. Originality/value The author aims to investigate the feasibility and practicality of linking the three areas together, namely, multi-agent system, FL and blockchain. A blockchain-FL framework, which is based on a smart agent system, has been proposed. The author has made several contributions to the state-of-the-art. First of all, a concrete design of a smart agent model is proposed, inspired by the smart contract concept in blockchain. The smart agent is autonomous and is able to disseminate, verify the information and execute the supported protocols. Based on the proposed smart agent model, a new architecture composed by these agents is formed, which is a blockchain network. Then, a fully decentralized, privacy-preserving and smart agent blockchain-FL framework has been proposed, where a smart agent acts as both a peer in a blockchain network and a participant in a FL task at the same time. Finally, a demonstration to train an artificial neural network is implemented to prove the effectiveness of the proposed framework.


Sign in / Sign up

Export Citation Format

Share Document