Biogas Production from Napier Grass at Various Cutting Intervals

Author(s):  
Nusara Sinbuathong ◽  
Yuwadee Sangsil ◽  
Suriya Sawanon
Author(s):  
Vannasinh Souvannasouk ◽  
Ming-yan Shen ◽  
Marlen Trejo ◽  
Prakash Bhuyar

The use of alternative biomass sources that are not competitive with food production is intended for sustainable management in biogas production through anaerobic digestion. This study investigates the Napier grass and cattle slurry-based biogas production application that could be applied more cost-effectively more sustainable production biogas. The laboratory-based biogas plant and a biogas plant in practice revealed that the results from the laboratory experiments were realistic and transferable into practice. The effect of feedstock screening on the biogas yield of Napier grass and cattle slurry was evaluated in batch digesters under mesophilic conditions. Moreover, highest methane content was reached 64.4%. The biogas from the co-digestion of Napier grass and cow farm slurry containing the higher calorific value was 25.69 MJ/m3, and the lower calorific value was 23.14 MJ/m3 . The results demonstrated that combining Napier grass with common cow farm slurry can accelerate the reaction, increase efficiency, and increase methane content. Therefore, the co-digestion of Napier grass and cow farm slurry was a promising method for increasing biogas production.


Author(s):  
Christian C. Opurum ◽  
Christian O. Nweke ◽  
Christopher E. Nwanyanwu ◽  
Nkemakolam A. Nwogu

This study evaluated the kinetics of diauxic-like pattern of biogas production from energy crops, Sunflower (SF) and Napier grass (NG) with cow dung (CD). The tests were performed in a batch reactor (R) operation for 60 days in R1 - R4 and 53 days in R5 - R8 under mesophilic conditions (24 - 36OC). The characteristics of the tested energy crops suggest that they hold prospects for bioenergy production. The cumulative biogas yield/gVS showed that the best performance was R1 with a biogas yield of 15.17 dm3 (0.046 dm3/gVS) followed by R3, 13.90 dm3 (0.041 dm3/gVS) and R2, 11.01dm3 (0.032 dm3/gVS). A significant difference (P ≤ 0.05) in biogas yield was found in the reactors charged with SF/CD as against SF only. In the reactors that exhibited biphasic biogas production profile, two (2) kinetic parameters, K1 and K2 were determined by the bi-logistic function model. It was observed that the predicted values in the second phase (K2) of biogas production were considerably higher than the first phase (K1) in R2 - R5 as opposed to R6 - R8, which implies more biogas yield in phase 2 than phase 1. The results indicate that anaerobic digestion of SF and NG had a strong positive influence on biogas yield, BP, PR and λ1 but not for λ2. The bi-logistic function model suitably fitted the experimental data with a high correlation coefficient (R2) in the range of 0.986 - 0.997. Based on the kinetic parameters, the bi-logistic function model is well suited for the simulation of diauxic-like biogas production process.


2014 ◽  
Vol 31 ◽  
pp. S97 ◽  
Author(s):  
Pramote Sirirote ◽  
Farida Promma ◽  
Dusanee Thanaboripat

2013 ◽  
Vol 856 ◽  
pp. 327-332 ◽  
Author(s):  
Apiwaj Janejadkarn ◽  
Orathai Chavalparit

The objective of this research was to evaluate the quantity of biogas production from napier grass (Pak Chong 1) (Pennisetum purpureum × Pennisetum americanum) in three identical continuously stirred tank reactor (CSTRs) at room temperature. The volatile solids feed was varied at 1.5, 2 and 3%, respectively. The organic loading rate was altered at 0.43, 0.57 and 0.86 kg VS/m3.d in CSTR 1, 2 and 3, respectively. Three laboratory scale CSTRs with working volume of 5 l were carried out. The results showed that the optimum volatile solids fraction was 2% VS with maximum biogas production of 0.529 m3/kg VS added. The methane production was achieved at 0.242 m3/kg VS added. Under this condition, the soluble chemical oxygen demand (SCOD) of the hydrolysate was increased by 74% and the SCOD and VS removal efficiency were obtained 52.52% and 55.98%, respectively. The highest total volatile fatty acid was obtained on day 12, which was 5.51 g/l and the highest concentration of HAc was 4.33 g/l. The results indicated that volatile solids fraction was 2% VS achieves a maximum biogas yield and can be successfully converted using anaerobic digestion and was investigated into economical and scalable.


2016 ◽  
Vol 86 ◽  
pp. 53-64 ◽  
Author(s):  
P. Satjaritanun ◽  
Y. Khunatorn ◽  
N. Vorayos ◽  
S. Shimpalee ◽  
E. Bringley

2014 ◽  
Vol 61 ◽  
pp. 1229-1233 ◽  
Author(s):  
Vanatpornratt Sawasdee ◽  
Nipon Pisutpaisal

Sign in / Sign up

Export Citation Format

Share Document