scholarly journals Biotechnological application of sustainable biogas production through dry anaerobic digestion of Napier grass

3 Biotech ◽  
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Natthawud Dussadee ◽  
Rameshprabu Ramaraj ◽  
Tapana Cheunbarn
2021 ◽  
Author(s):  
Akinola David Olugbemide ◽  
Blaž Likozar ◽  
Ana Oberlintner ◽  
Uroš Novak ◽  
Ekebafe Lawrence

Abstract In this research study, the impact of the feedstock to the inoculum (F/I) amount ratio in the dry anaerobic digestion (DAD) of Hura crepitans leaves was evaluated. Measured biogas volumes, as well as the chemical kinetic predictions for exponential, logistic and Gompertz model, depicting the agreement of the simulations over time, were also determined. From the F/I equivalents 2, 4 and 6 at 22 % of packed total solids, which were considered in analysis test procedure, the DAD digester with F/I number 4 was the most promising in terms of biogas’ production rate. Its daily methane/carbon dioxide was 690 mL, while cumulative generation productivity was greater than 2 L/sample, respectively. On the other hand, the DAD reaction with F/I contained 6, recorded the lowest related expressed primary matter of < 1 L. An associated early commencement of the organic material breakdown in all bio vessels was indicative of a good start-up phase, which is one of the challenges, often encountered in DAD process. Furthermore, applied experimental methods revealed the direct correlation phenomena between biodegradability physical constants, measured molecular CH4/CO2 synthesis and simulations. Hura crepitans being an invasive plant species makes its lignocellulosic fractions desired in terms of valorisation, as it is not competing with agricultural crop products. Modelling can, moreover, contribute to consecutive operation optimisation, scaling and integrating, also taking dynamics under consideration. As opposed to bio-refining wood residues, where individual cellulose, hemicellulose or lignin biopolymers can be attained, degradation to yield CH4 is robust, as well as compatible in combustion.


2019 ◽  
Vol 294 ◽  
pp. 122188 ◽  
Author(s):  
Youqian Xiao ◽  
Hongnan Yang ◽  
Han Yang ◽  
Hong Wang ◽  
Dan Zheng ◽  
...  

2015 ◽  
Vol 768 ◽  
pp. 281-288
Author(s):  
Lian Hai Ren ◽  
Yan Bing Huang ◽  
Pan Wang

The variations of daily biogas yields, cumulative biogas yields, biogas composition analysis, total solids (TS) and volatile solids (VS) were studied in the process of mesophilic and dry anaerobic digestion of food waste under different oil contents (0%, 2%, 4%, 6%, 8%, 10%) at 35 °C. The gas production raised and then went down with the oil content, followed by 243.14, 245.64, 256.09, 269.25, 276.54, 284.22mL /g TS respectively. The research provided a reference for the pretreatment of food waste in follow-up continuous fermentation. Results showed that the period of the process of mesophilic dry anaerobic digestion under oil content of 0% was the shortest, with the total biogas production of 1275.5mL. During the process of the digestion, methane content of the biogas raised and then went down, up to a maximum of 77.62%. The removal rate of TS and VS in food waste with the oil content of 6% was the highest, obtained as 11.2% and 13.2%, respectively.


2012 ◽  
Vol 253-255 ◽  
pp. 897-902
Author(s):  
Li Jun Shi ◽  
Miao Huang ◽  
Wei Yu Zhang ◽  
Hui Fen Liu

In this paper anaerobic digestion of dairy manure and straw was conducted to produce biogas. Under the conditions of C/N=25-30 and T=36°C, five kinds of dry matter concentration of 20%, 15%, 10%, 5% and 2.5% were tested to investigate the effect of dry matter concentration on anaerobic digestion. The result showed that first 30 days was the biogas production peak phase and VFA concentrations in the leachate were also high during the same period. When dry matter concentration increased, biogas production appeared larger fluctuation, and alkalinity and NH4+-N concentration in the leachate also increased with higher organic loading rate. Among five kinds of dry matter concentration, 10% was more suitable for anaerobic digestion to produce biogas with total biogas production amount of 4710 mL after 30 days and volumetric biogas yield of 0.313 m3•m-3•d-1. These results could provide instructive meaning to the engineering application of dry anaerobic digestion.


2010 ◽  
Vol 113-116 ◽  
pp. 740-743 ◽  
Author(s):  
Jha Ajay Kumar ◽  
Jian Zheng Li ◽  
Jun Guo He ◽  
Sheng Chang ◽  
A.K. Jha

Dry methane fermentation is an innovative anaerobic digestion technique to treat solid bio-wastes without dilution for potential energy recovery with nutrient rich fertilizer and sustainable waste management. Although dry anaerobic fermentation offers great advantages like utilization of wastes in its produced form, high organic loading rate, no liquid effluent and comparable amount of biogas production with wet fermentation, commercial dry anaerobic digestion is scarcely used so far. In order to develop feasible dry fermentation process, it is important to review the optimization techniques and suggested possible areas where improvements could be made, including the reactor configuration, mixing, feed stocks, co-digestion, pretreatment and environmental conditions within the digester.


Sign in / Sign up

Export Citation Format

Share Document