Coded Orbital Angular Momentum Modulation and Multiplexing Enabling Ultra-High-Speed Free-Space Optical Transmission

Author(s):  
Ivan B. Djordjevic ◽  
Zhen Qu
Author(s):  
Zhen Qu ◽  
Ivan Djordjevic

We review recent progress in high-speed orbital angular momentum (OAM) multiplexed free-space optical communication systems. The outdoor atmospheric turbulence is emulated by an indoor turbulence emulator, which is based on split-step beam propagation method. Adaptive optics, channel coding, Huffman coding combined with LDPC coding, and spatial offset are used for turbulence mitigation; while OAM multiplexing and wavelength-division multiplexing (WDM) are applied to boost aggregate capacity.


Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Jian Wang ◽  
Jun Liu ◽  
Shuhui Li ◽  
Yifan Zhao ◽  
Jing Du ◽  
...  

Abstract Orbital angular momentum (OAM), which describes tailoring the spatial physical dimension of light waves into a helical phase structure, has given rise to many applications in optical manipulation, microscopy, imaging, metrology, sensing, quantum science, and optical communications. Light beams carrying OAM feature two distinct characteristics, i.e., inherent orthogonality and unbounded states in principle, which are suitable for capacity scaling of optical communications. In this paper, we give an overview of OAM and beyond in free-space optical communications. The fundamentals of OAM, concept of optical communications using OAM, OAM modulation (OAM modulation based on spatial light modulator, high-speed OAM modulation, spatial array modulation), OAM multiplexing (spectrally efficient, high capacity, long distance), OAM multicasting (adaptive multicasting, N-dimensional multicasting), OAM communications in turbulence (adaptive optics, digital signal processing, auto-alignment system), structured light communications beyond OAM (Bessel beams, Airy beams, vector beams), diverse and robust communications using OAM and beyond (multiple scenes, turbulence-resilient communications, intelligent communications) are comprehensively reviewed. The prospects and challenges of optical communications using OAM and beyond are also discussed at the end. In the future, there will be more opportunities in exploiting extensive advanced applications from OAM beams to more general structured light.


2011 ◽  
Vol 47 (17) ◽  
pp. 972 ◽  
Author(s):  
P. Martelli ◽  
A. Gatto ◽  
P. Boffi ◽  
M. Martinelli

Sign in / Sign up

Export Citation Format

Share Document