Application of Satellite Radar Altimeter Data in Operational Flood Forecasting of Bangladesh

Author(s):  
Amirul Hossain ◽  
Md. Arifuzzaman Bhuiyan
2000 ◽  
Vol 30 ◽  
pp. 76-82 ◽  
Author(s):  
Ute Christina Herzfeld ◽  
Ralf Stosius ◽  
Marcus Schneider

AbstractThe Antarctic ice sheet plays a major role in the global system and the large ice streams discharging into the circumpolar sea represent its gateways to the world’s oceans. Satellite radar-altimeter data provide an opportunity for mapping surface elevation at kilometer resolution with meter accuracy. Geostatistical methods have been developed to accomplish this. We distinguish two goals in mapping the Antarctic ice surface: (a) construction of a continent-wide atlas of maps and digital terrain models, and (b) calculation of maps and models suitable for the study of individual glaciers, ice streams and ice shelves. The atlases consist of accurate maps of ice-surface elevation compiled from Seasat, Geosat and ERS-1 altimeter data, covering all of Antarctica surveyed by Geosat (to 72.1° S) and by ERS-1 (to 81.5° S). With a 3 km grid they are the highest-resolution maps available today with continent-wide coverage. The resolution permits geophysical study and facilitates monitoring of changes in ice-surface elevation and changes in flux across the ice-ocean boundary, which is essential for monitoring sea-level changes.


1995 ◽  
Vol 41 (139) ◽  
pp. 607-618 ◽  
Author(s):  
Ellen J. Ferraro ◽  
Calvin T. Swift

AbstractThis paper presents radar-altimeter scattering models for each of the diagenetic zones of the Greenland ice sheet. AAFE radar-altimeter waveforms obtained during the 1991 and 1993 NASA multi-sensor airborne altimetry experiments over Greenland reveal that the Ku-band return pulse changes significantly with the different diagenetic zones. These changes are due to varying amounts of surface and volume scattering in the return waveform.In the ablation and soaked zones, where surface scattering dominates the AAFE return, geophysical parameters such as rms surface height and rms surface slope are obtained by fitting the waveforms to a surface-scattering model. Waveforms from the percolation zone show that sub-sruface ice features have a much more significant effect on the return pulse than the surrounding snowpack. Model percolation waveforms, created using a combined surface- and volume-scattering model and an ice-feature distribution obtained during the 1993 field season, agree well with actual AAFE waveforms taken in the same time period. Using a combined surface- and volume-scattering model for the dry-snow-zone return waveforms, the rms surface height and slope and the attenuation coefficient of the snowpack are obtained. These scattering models not only allow geophysical parameters of the ice sheet to he measured but also help in the understanding of satellite radar-altimeter data.


1997 ◽  
Vol 43 (145) ◽  
pp. 589-591
Author(s):  
Ute Christina Herzfeld ◽  
Michael S. Matassa

Sign in / Sign up

Export Citation Format

Share Document