Comparison of Nonlocal Operators Utilizing Perturbation Analysis

Author(s):  
Burak Aksoylu ◽  
Fatih Celiker
Author(s):  
M.M. Konstantinov ◽  
P.Hr. Petkov ◽  
N.D. Christov

2020 ◽  
Vol 10 (1) ◽  
pp. 895-921
Author(s):  
Daniele Cassani ◽  
Luca Vilasi ◽  
Youjun Wang

Abstract In this paper we study a class of one-parameter family of elliptic equations which combines local and nonlocal operators, namely the Laplacian and the fractional Laplacian. We analyze spectral properties, establish the validity of the maximum principle, prove existence, nonexistence, symmetry and regularity results for weak solutions. The asymptotic behavior of weak solutions as the coupling parameter vanishes (which turns the problem into a purely nonlocal one) or goes to infinity (reducing the problem to the classical semilinear Laplace equation) is also investigated.


2021 ◽  
Vol 183 (1) ◽  
Author(s):  
Géraldine Haack ◽  
Alain Joye

AbstractThis paper is devoted to the analysis of Lindblad operators of Quantum Reset Models, describing the effective dynamics of tri-partite quantum systems subject to stochastic resets. We consider a chain of three independent subsystems, coupled by a Hamiltonian term. The two subsystems at each end of the chain are driven, independently from each other, by a reset Lindbladian, while the center system is driven by a Hamiltonian. Under generic assumptions on the coupling term, we prove the existence of a unique steady state for the perturbed reset Lindbladian, analytic in the coupling constant. We further analyze the large times dynamics of the corresponding CPTP Markov semigroup that describes the approach to the steady state. We illustrate these results with concrete examples corresponding to realistic open quantum systems.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Ivan M. Burbano ◽  
T. Rick Perche ◽  
Bruno de S. L. Torres

Abstract Particle detectors are an ubiquitous tool for probing quantum fields in the context of relativistic quantum information (RQI). We formulate the Unruh-DeWitt (UDW) particle detector model in terms of the path integral formalism. The formulation is able to recover the results of the model in general globally hyperbolic spacetimes and for arbitrary detector trajectories. Integrating out the detector’s degrees of freedom yields a line defect that allows one to express the transition probability in terms of Feynman diagrams. Inspired by the light-matter interaction, we propose a gauge invariant detector model whose associated line defect is related to the derivative of a Wilson line. This is another instance where nonlocal operators in gauge theories can be interpreted as physical probes for quantum fields.


2021 ◽  
Vol 31 (2) ◽  
pp. 023109
Author(s):  
Guillermo H. Goldsztein ◽  
Alice N. Nadeau ◽  
Steven H. Strogatz

Sign in / Sign up

Export Citation Format

Share Document