scholarly journals The Adaptation M&E Navigator: A Decision Support Tool for the Selection of Suitable Approaches to Monitor and Evaluate Adaptation to Climate Change

Author(s):  
Timo Leiter
Author(s):  
Omar S. Soliman ◽  
Aboul Ella Hassanien ◽  
Neveen I. Ghali ◽  
Nashwa El-Bendary ◽  
Ruhul A. Sarker

2015 ◽  
Vol 15 (7) ◽  
pp. 1457-1471 ◽  
Author(s):  
P. J. Knight ◽  
T. Prime ◽  
J. M. Brown ◽  
K. Morrissey ◽  
A. J. Plater

Abstract. A pressing problem facing coastal decision makers is the conversion of "high-level" but plausible climate change assessments into an effective basis for climate change adaptation at the local scale. Here, we describe a web-based, geospatial decision support tool (DST) that provides an assessment of the potential flood risk for populated coastal lowlands arising from future sea-level rise, coastal storms, and high river flows. This DST has been developed to support operational and strategic decision making by enabling the user to explore the flood hazard from extreme events, changes in the extent of the flood-prone areas with sea-level rise, and thresholds of sea-level rise where current policy and resource options are no longer viable. The DST is built in an open-source GIS that uses freely available geospatial data. Flood risk assessments from a combination of LISFLOOD-FP and SWAB (Shallow Water And Boussinesq) models are embedded within the tool; the user interface enables interrogation of different combinations of coastal and river events under rising-sea-level scenarios. Users can readily vary the input parameters (sea level, storms, wave height and river flow) relative to the present-day topography and infrastructure to identify combinations where significant regime shifts or "tipping points" occur. Two case studies demonstrate the attributes of the DST with respect to the wider coastal community and the UK energy sector. Examples report on the assets at risk and illustrate the extent of flooding in relation to infrastructure access. This informs an economic assessment of potential losses due to climate change and thus provides local authorities and energy operators with essential information on the feasibility of investment for building resilience into vulnerable components of their area of responsibility.


Author(s):  
I. Blečić ◽  
A. Cecchini ◽  
M. Minchilli ◽  
L. F. Tedeschi ◽  
G. A. Trunfio

<p><strong>Abstract.</strong> We present a decision suppport tool for the comparison and selection of projects of integrated renovation of derelict buildings and areas for the purpose of urban regeneration. Each project is defined as a subset of derelict properties to renovate together with their respective designated use, and is scored by the decision support tool on two criteria: expected effort and estimated effectiveness in terms of improved urban capabilities in the urban area of interest. The expected effort is estimated as a global transformation cost, factoring in legal and management overhead costs as well as possible economies of scale. The effectiveness in evaluated in terms of extension of urban capabilities centred on walkable distances. We have implemented a bi-objective evolutionary search algorithm to address the computational complexity of the problem of search for efficient (non-dominated) projects over the two criteria. For the purpose of illustration, we present an example case-study application on the historical core of the city of Sassari, Italy.</p>


Sign in / Sign up

Export Citation Format

Share Document