A Model-Based Decision Support Tool Using Fuzzy Optimization for Climate Change

Author(s):  
Omar S. Soliman ◽  
Aboul Ella Hassanien ◽  
Neveen I. Ghali ◽  
Nashwa El-Bendary ◽  
Ruhul A. Sarker
2015 ◽  
Vol 15 (7) ◽  
pp. 1457-1471 ◽  
Author(s):  
P. J. Knight ◽  
T. Prime ◽  
J. M. Brown ◽  
K. Morrissey ◽  
A. J. Plater

Abstract. A pressing problem facing coastal decision makers is the conversion of "high-level" but plausible climate change assessments into an effective basis for climate change adaptation at the local scale. Here, we describe a web-based, geospatial decision support tool (DST) that provides an assessment of the potential flood risk for populated coastal lowlands arising from future sea-level rise, coastal storms, and high river flows. This DST has been developed to support operational and strategic decision making by enabling the user to explore the flood hazard from extreme events, changes in the extent of the flood-prone areas with sea-level rise, and thresholds of sea-level rise where current policy and resource options are no longer viable. The DST is built in an open-source GIS that uses freely available geospatial data. Flood risk assessments from a combination of LISFLOOD-FP and SWAB (Shallow Water And Boussinesq) models are embedded within the tool; the user interface enables interrogation of different combinations of coastal and river events under rising-sea-level scenarios. Users can readily vary the input parameters (sea level, storms, wave height and river flow) relative to the present-day topography and infrastructure to identify combinations where significant regime shifts or "tipping points" occur. Two case studies demonstrate the attributes of the DST with respect to the wider coastal community and the UK energy sector. Examples report on the assets at risk and illustrate the extent of flooding in relation to infrastructure access. This informs an economic assessment of potential losses due to climate change and thus provides local authorities and energy operators with essential information on the feasibility of investment for building resilience into vulnerable components of their area of responsibility.


Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 440 ◽  
Author(s):  
Irina Cristal ◽  
Aitor Ameztegui ◽  
Jose Ramon González-Olabarria ◽  
Jordi Garcia-Gonzalo

In the climate change era, forest managers are challenged to use innovative tools to encourage a sustained provision of goods and services. Many decision support tools (DSTs), developed to address global changes in forest management practices, reflect the complexity of the scientific knowledge produced, a fact that could make it difficult for practitioners to understand and adopt them. Acknowledging the importance of knowledge transfer to forestry practitioners, this study describes a user-centric decision support software tool, aiming to assess forest management and climate change impacts on multiple ecosystem services (ESs) at a stand level. SORTIE-ND, a spatially explicit tree-level simulator for projecting stand dynamics that is sensitive to climate change, is encapsulated into the decision support tool and used as the simulation engine for stand development. Linking functions are implemented to evaluate ecosystem services and potential risks, and decision support is provided in form of interactive 2D and 3D visualizations. Five main components were identified to delineate the workflow and to shape the decision support tool: the information base, the alternative generator, the forest simulator, the ecosystem services calculator, and the visualization component. In order to improve the interaction design and general user satisfaction, the usability of the system was tested at an early stage of the development. While we have specifically focused on a management-oriented approach through user-centric interface design, the utilization of the product is likely to be of importance in facilitating education in the field of forest management.


Author(s):  
Simon M. Jessop ◽  
Thomas C. Cook

Impact Technologies developed a model-based decision support Framework that facilitates the use and development of decision support tools in a CBM environment. The Framework leverages existing CBM and PHM data to provide enhanced automated strategic analysis. Its modular structure promotes reusability of components to expedite development of new decision capabilities, making it extensible to many different operational environments. The Framework also embraces open architecture and standardized data interfaces for increased supportability and upgradeability. An advanced probability-based mission readiness forecasting and assessment tool developed by Impact Technologies for the U.S. Navy was used to illustrate how the proposed Framework facilitates the assembly of independent decision support tools to provide a high fidelity knowledge product. In this application the Framework combined three separate functional areas — a mission profile modeling tool, a system relational model, and a maintenance optimization module. The mission profile modeling tool provided the ability to create functional representations of multi-layered complex systems for any mode of operation, accounting for different machinery line-ups, redundancy, system-to-system interactions, and component and sub-system criticalities. The system relational model provided the overall system probability of failure calculated based on the current and projected system configuration and usage. The maintenance optimization module determined the safest and most cost-effective time to perform required and opportunistic maintenance. The resulting software product enables the comparison of multiple what-if scenarios where the scheduling of maintenance and logistics support activities can be optimized based on resource availability and the propagation effects of those actions can be measured in terms of readiness at any level within the system hierarchy. A visual assessment of the ship’s probability of completing the prescribed mission of any combination of ship operations (e.g., anti-surface warfare, non-combat operations, or mine warfare) can be generated so corrective actions in the form of maintenance or changes to mission operations can be evaluated. The tool incorporates several novel approaches including fusion of multiple independent low-level indicators to predict overall system readiness, methodologies to account for the interactive effects of interconnected subsystems, and a risk-based optimization to select and schedule the optimal maintenance schedule. This paper summarizes the features of the model-based decision support tool Framework and the mission readiness software application developed using this architecture.


Sign in / Sign up

Export Citation Format

Share Document