Microstructure and Phase Transformation Behaviour of Co–Ni–Al Alloy by Spark Plasma Sintering

Author(s):  
G. Johnsy Arputhavalli ◽  
S. Agilan ◽  
Roy Johnson
2011 ◽  
Vol 43 (1) ◽  
pp. 327-339 ◽  
Author(s):  
Yuhong Xiong ◽  
Dongming Liu ◽  
Ying Li ◽  
Baolong Zheng ◽  
Chris Haines ◽  
...  

2011 ◽  
Vol 250-253 ◽  
pp. 3309-3312 ◽  
Author(s):  
Zhi Wei Wang ◽  
Hong Cheng ◽  
Hui Ming Cheng

Powder of Ti-46at%Al alloy was synthesized through mechanical activation (MA) and then sintered and concurrently consolidated in a short sintering time of 900 s by using spark plasma sintering (SPS) process. The XRD and SEM profiles show that the microstructures of TiAl alloys contained γ TiAl and small amount α-2 Ti3Al phase, whose amount can be controlled by the sintering temperature. The compacts retained the original fine-grained fully densified bodies by avoiding an excessively high sintering temperature. The alloys sintered at higher temperature with this process showed a coarser microstructure. So it is possible to produce dense nanostructured TiAl alloys by mechanically activated spark plasma sintering (MASPS) within a very short period of time.


2011 ◽  
Vol 284-286 ◽  
pp. 2336-2339
Author(s):  
Zhi Wei Wang ◽  
Jun Chen

Powder of Ti-46at%Al alloy was synthesized through mechanical activation (MA) and then sintered and concurrently consolidated in a short sintering time of 900 s by using spark plasma sintering (SPS) process. The XRD and SEM profiles show that the microstructures of TiAl alloys contained γ TiAl and small amount α-2 Ti3Al phase, whose amount can be controlled by the sintering temperature. The compacts retained the original fine-grained fully densified bodies by avoiding an excessively high sintering temperature. The alloys sintered at higher temperature with this process showed a coarser microstructure. So it is possible to produce dense nanostructured TiAl alloys by mechanically activated spark plasma sintering (MASPS) within a very short period of time.


2014 ◽  
Vol 616 ◽  
pp. 194-198 ◽  
Author(s):  
Jian Feng Zhang ◽  
Rong Tu ◽  
Takashi Goto

WC-Co-cBN composites were consolidated by SPS at 1373 to 1673 K under a moderate pressure of 100 MPa. The addition of cBN increased the starting and finishing temperature of shrinkage and decreased the relative density of WC-Co. The relative density of WC-(10-20 vol%) cBN composites was about 97-100% at 1573 K and decreased with increasing the sintering temperature to 1673 K due to the phase transformation of cBN to hBN. The highest hardness and fracture toughness of WC-Co-20 vol% cBN composite sintered at 1573 K were 23.2 GPa and 8.0 MP m1/2, respectively.


1999 ◽  
Vol 40 (5) ◽  
pp. 389-391 ◽  
Author(s):  
Zheng Wang ◽  
Minoru Matsumoto ◽  
Toshihiko Abe ◽  
Katsunari Oikawa ◽  
Jinhao Qiu ◽  
...  

2013 ◽  
Vol 61 (8) ◽  
pp. 2769-2782 ◽  
Author(s):  
Haiming Wen ◽  
Troy D. Topping ◽  
Dieter Isheim ◽  
David N. Seidman ◽  
Enrique J. Lavernia

2008 ◽  
Vol 403 ◽  
pp. 241-242
Author(s):  
Mikinori Hotta ◽  
Takashi Goto

SiAlON-cubic boron nitride (cBN) composite was prepared by spark plasma sintering (SPS) using -SiAlON and cBN powders as starting materials, and the effect of holding time on densification, phase transformation and hardness of the composite was investigated. The SiAlON-cBN composite containing 20 vol% cBN sintered at 1650oC for 60s was densified to >97% of theoretical density. cBN phase transformed to hexagonal boron nitride (hBN) in the SiAlON-cBN composite with increasing holding time at 1650oC. Vickers hardness of the SiAlON-20vol%cBN composite sintered at 1650oC for 60-300s was 17.7GPa, and the hardness decreased with increasing holding time.


Sign in / Sign up

Export Citation Format

Share Document