Spark Plasma Sintering and Characterization of WC-Co-cBN Composites

2014 ◽  
Vol 616 ◽  
pp. 194-198 ◽  
Author(s):  
Jian Feng Zhang ◽  
Rong Tu ◽  
Takashi Goto

WC-Co-cBN composites were consolidated by SPS at 1373 to 1673 K under a moderate pressure of 100 MPa. The addition of cBN increased the starting and finishing temperature of shrinkage and decreased the relative density of WC-Co. The relative density of WC-(10-20 vol%) cBN composites was about 97-100% at 1573 K and decreased with increasing the sintering temperature to 1673 K due to the phase transformation of cBN to hBN. The highest hardness and fracture toughness of WC-Co-20 vol% cBN composite sintered at 1573 K were 23.2 GPa and 8.0 MP m1/2, respectively.

2004 ◽  
Vol 19 (11) ◽  
pp. 3263-3269 ◽  
Author(s):  
U. Anselmi-Tamburini ◽  
J.E. Garay ◽  
Z.A. Munir ◽  
A. Tacca ◽  
F. Maglia ◽  
...  

Dense fully stabilized cubic zirconia, sintered by the spark plasma sintering (SPS) method, was characterized through hardness, fracture toughness, and electrical impedance measurements. The effect of sintering temperature on hardness and fracture toughness was evaluated. Samples sintered at 1200 °C for 5 min, which had crystallite size of <100 nm, exhibited the highest hardness. Impedance measurements showed an increase in bulk contribution relative to grain boundaries as sintering temperature is increased. Calculation of the activation energy for conduction gave a value, 1.13 eV, in agreement with previously published results.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Duk-Yeon Kim ◽  
Young-Hwan Han ◽  
Jun Hee Lee ◽  
Inn-Kyu Kang ◽  
Byung-Koog Jang ◽  
...  

Pure HA and 1, 3, 5, and 10 vol% multiwalled carbon nanotube- (MWNT-) reinforced hydroxyapatite (HA) were consolidated using a spark plasma sintering (SPS) technique. The relative density of pure HA increased with increasing sintering temperature, but that of the MWNT/HA composite reached almost full density at 900°C, and then decreased with further increases in sintering temperature. The relative density of the MWNT/HA composites increased with increasing MWNT content due to the excellent thermal conductivity of MWNTs. The grain size of MWNT/HA composites decreased with increasing MWNT content and increased with increasing sintering temperature. Pull-out toughening of the MWNTs of the MWNT/HA composites was observed in the fractured surface, which can be used to predict the improvement of the mechanical properties. On the other hand, the existence of undispersed or agglomerate MWNTs in the MWNT/HA composites accompanied large pores. The formation of large pores increased with increasing sintering temperature and MWNT content. The addition of MWNT in HA increased the hardness and fracture toughness by approximately 3~4 times, despite the presence of large pores produced by un-dispersed MWNTs. This provides strong evidence as to why the MWNTs are good candidates as reinforcements for strengthening the ceramic matrix. The MWNT/HA composites did not decompose during SPS sintering. The MWNT-reinforced HA composites were non-toxic and showed a good cell affinity and morphologyin vitrofor 1 day.


2005 ◽  
Vol 287 ◽  
pp. 335-339 ◽  
Author(s):  
Kyeong Sik Cho ◽  
Kwang Soon Lee

Rapid densification of the SiC-10, 20, 30, 40wt% TiC powder with Al, B and C additives was carried out by spark plasma sintering (SPS). In the present SPS process, the heating rate and applied pressure were kept at 100°C/min and at 40 MPa, while the sintering temperature varied from 1600-1800°C in an argon atmosphere. The full density of SiC-TiC composites was achieved at a temperature above 1800°C by spark plasma sintering. The 3C phase of SiC in the composites was transformed to 6H and 4H by increasing the process temperature and the TiC content. By tailoring the microstructure of the spark-plasma-sintered SiC-TiC composites, their toughness could be maintained without a notable reduction in strength. The strength of 720 MPa and the fracture toughness of 6.3 MPa·m1/2 were obtained in the SiC-40wt% TiC composite prepared at 1800°C for 20 min.


2008 ◽  
Vol 368-372 ◽  
pp. 1059-1061 ◽  
Author(s):  
Ai Bing Du ◽  
Zhi Xue Qu ◽  
Chun Lei Wan ◽  
Ruo Bing Han ◽  
Wei Pan

Spark plasma sintering was used to fabricate the LaPO4 ceramics and the effect of SPS holding time and sintering temperature on the densification and texture of LaPO4 ceramics were studied. The results revealed that holding time had no obvious influence on the densification of LaPO4 ceramics under the present process. The density increases with the increase of sintering temperature, when it reached 1350°C, the relative density kept nearly constant of 98.6 %. The preferred orientation of LaPO4 ceramics approximately increases with the increase of sintering temperature, but contrary impact in holding time.


2014 ◽  
Vol 602-603 ◽  
pp. 380-383
Author(s):  
Chao He ◽  
Xiao Fei Shi ◽  
Xin Yan Yue ◽  
Jiang Jun Wang ◽  
Hong Qiang Ru

SiAlON-cBN composites with different contents of cBN were consolidated by spark plasma sintering (SPS) at 1450°C using Y2O3, B2O3 and Al as additives. The effect of cBN content on the density, phase compositions, microstructures and mechanical properties of β-SiAlON-cBN composites was investigated. With increasing the cBN content, the density and hardness of β-SiAlON-cBN composites decreased. Fracture toughness could increase thanks to the crack deflection resulted from the cBN particles. For β-SiAlON-10 wt% cBN composites, the optimum hardness and highest relative density were 13 GPa and 96.4 %, respectively. For β-SiAlON-40 wt% cBN composites, the highest fracture toughness was KIC = 5.3 MPa∙m1/2.


2008 ◽  
Vol 368-372 ◽  
pp. 544-546
Author(s):  
Dong Choul Cho ◽  
Jae Seol Lee ◽  
Chul Ho Lim ◽  
Chi Hwan Lee

The n-type Bi2Te2.7Se0.3 compounds were fabricated to investigate the characterization of spark plasma sintering with various SbI3 dopant contents. The Bi2Te2.7Se0.3 compounds with SbI3 dopant content is exhibited n-type conduction characterization, but the Bi2Te2.7Se0.3 compounds without SbI3 dopant content is exhibited p-type conduction characterization. The maximum Seebeck coeficient represented with 0.05wt.% SbI3 dopant content. The Seebeck coefficient of the sintered sample with increasing sintering temperature is increased from -158 to -182 μV/K. The electrical resistivity and thermal conductivity with 0.05wt.% SbI3 dopant content were 1.0 m and 1.33 W/mK, respectively.


2007 ◽  
Vol 351 ◽  
pp. 176-179 ◽  
Author(s):  
Fa Qiang Yan ◽  
Fei Chen ◽  
Qiang Shen ◽  
Lian Meng Zhang

In the present study, α-Si3N4 is prepared by using MgO and Al2O3 as the sintering additives and spark plasma sintering (SPS) technique. The SPS sintering mechanism is discussed. The relationship between the content of sintering additives, sintering temperature and relative densities of the samples is analyzed. The results suggest that when the sintering temperature is 1300-1500°C, the content of sintering additives is 6wt.%-10wt.%, the relative density of sintered samples is 64%-96%. When the sintering temperature reaches 1400°C, the content of sintering additives is 10%, the samples can be fully dense sintered and the relative density can be up to 95%. The sintering mechanism is liquid phase sintering. The bending strength of the sintered samples is 50-403MPa and has a close correlation with the relative density.


2012 ◽  
Vol 512-515 ◽  
pp. 739-743 ◽  
Author(s):  
S.Z. Zhu ◽  
D.L. Gong ◽  
Z. Fang ◽  
Q. Xu

For high thermal conductivity and high electrical conductivity, copper is a good electrode material. The wearing resistance and spark resistance of Cu can be improved with the addition of ZrB2. ZrB2-Cu composites with high Cu volume fraction was successfully prepared by spark plasma sintering (SPS) process in this paper. The microstructure and properties of the sintered samples were characterized. The effect of the sintering temperature and the ZrB2 content in composites on the relative density and properties of the composites were investigated. The results show that the relative density and mechanical properties increase with the sintering temperature increasing. The optimum sintering temperature is 900 °C for 10wt.% ZrB2-Cu, 1000 °C for 20wt.% ZrB2-Cu and 1050 °C for 30wt.% ZrB2-Cu. With the ZrB2 content in composites increasing from 10wt.% to 30 wt.%, the electrical resistivity increases from 2.25×10-6 Ω.cm to 8.82×10-6 Ω.cm, the flexural strength decreases from to 539.1 MPa to 482.2 MPa and the fracture toughness decreases from to 15 MPa.m 1/2 to 9 MPa.m 1/2. The hardness (HV) of ZrB2-Cu composites is significantly enhanced by the ZrB2 particulate reinforcement, increasing from 1410 MPa for 10 wt.% ZrB2 to 2480 MPa for 30wt.% ZrB2.


Author(s):  
Shufeng Li ◽  
Hiroshi Izui ◽  
Michiharu Okano

This paper discusses the dependence of the mechanical properties and microstructure of sintered hydroxyapatite (HA) on the sintering temperature and pressure. A set of specimens was prepared from as-received HA powder and sintered by using a spark plasma sintering (SPS) process. The sintering pressures were set at 22.3MPa, 44.6MPa, and 66.9MPa, and sintering was performed in the temperature range from 800°Cto1000°C at each pressure. Mechanisms underlying the interrelated temperature-mechanical and pressure-mechanical properties of dense HA were investigated. The effects of temperature and pressure on the flexural strength, Young’s modulus, fracture toughness, relative density, activation energy, phase stability, and microstructure were assessed. The relative density and grain size increased with an increase in the temperature. The flexural strength and Young’s modulus increased with an increase in the temperature, giving maximum values of 131.5MPa and 75.6GPa, respectively, at a critical temperature of 950°C and 44.6MPa, and the fracture toughness was 1.4MPam1∕2 at 1000°C at 44.6MPa. Increasing the sintering pressure led to acceleration of the densification of HA.


Sign in / Sign up

Export Citation Format

Share Document