Setaria viridis as a Model for C4 Photosynthesis

Author(s):  
Carla Coelho ◽  
Pu Huang ◽  
Thomas P. Brutnell
2010 ◽  
Vol 22 (8) ◽  
pp. 2537-2544 ◽  
Author(s):  
Thomas P. Brutnell ◽  
Lin Wang ◽  
Kerry Swartwood ◽  
Alexander Goldschmidt ◽  
David Jackson ◽  
...  

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Maria Ermakova ◽  
Patricia E. Lopez-Calcagno ◽  
Christine A. Raines ◽  
Robert T. Furbank ◽  
Susanne von Caemmerer

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Florence R. Danila ◽  
Vivek Thakur ◽  
Jolly Chatterjee ◽  
Soumi Bala ◽  
Robert A. Coe ◽  
...  

AbstractC4 photosynthesis provides an effective solution for overcoming the catalytic inefficiency of Rubisco. The pathway is characterised by a biochemical CO2 concentrating mechanism that operates across mesophyll and bundle sheath (BS) cells and relies on a gas tight BS compartment. A screen of a mutant population of Setaria viridis, an NADP-malic enzyme type C4 monocot, generated using N-nitroso-N-methylurea identified a mutant with an amino acid change in the gene coding region of the ABCG transporter, a step in the suberin synthesis pathway. Here, Nile red staining, TEM, and GC/MS confirmed the alteration in suberin deposition in the BS cell wall of the mutant. We show that this has disrupted the suberin lamellae of BS cell wall and increased BS conductance to CO2 diffusion more than two-fold in the mutant. Consequently, BS CO2 partial pressure is reduced and CO2 assimilation was impaired in the mutant. Our findings provide experimental evidence that a functional suberin lamellae is an essential anatomical feature for efficient C4 photosynthesis in NADP-ME plants like S. viridis and have implications for engineering strategies to ensure future food security.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Govinda Rizal ◽  
Kelvin Acebron ◽  
Reychelle Mogul ◽  
Shanta Karki ◽  
Nikki Larazo ◽  
...  

Green foxtail millet (Setaria viridis) has NADP-ME type of C4 photosynthesis. Because of its short life cycle, small genome size of ~515 Mb, small plant stature, high number of seed set, simple growth requirements, and wide adaptability, this diploid (2n=18) weed is proposed to be a model species for the study of C4 photosynthesis. It is also a representative of bioenergy grasses and a model for genetic study of invasive weeds. Despite having all traits of a model species, it is difficult to cross-pollinate because its flowering behavior is not well studied. We used time lapse digital recording to study the flowering time and pattern along a single panicle. We found that flowering in Setaria was triggered by the darkness of the night and when the temperature was lower than 35°C. The anthesis of all the spikelets in a panicle took up-to three nights flowering from 9:30 pm to 10:00 am in the morning. Each spikelet has three phases of anthesis during which pollination occurs. A spikelet remains open for less than three hours. The pollination time for each spikelet is less than 60 minutes. Information from this study will facilitate the geneticists and plant breeders to plan for efficient crossing of Setaria.


Author(s):  
Jolly Chatterjee ◽  
Robert A Coe ◽  
Kelvin Acebron ◽  
Vivek Thakur ◽  
Ragothaman M Yennamalli ◽  
...  

Abstract In C4 species β-carbonic anhydrase (CA), localized to the cytosol of the mesophyll cells, accelerates the interconversion of CO2 to HCO3  -, the substrate used by PEP carboxylase in the first step of C4 photosynthesis. Here we describe the identification and characterization of a low CO2  responsive mutant 1 (lcr1) isolated from a N-Nitroso-N-methylurea (NMU) treated Setaria viridis mutant population. Forward genetic investigation revealed that the mutated gene Sevir.5G247800 of lcr1 possessed a single nucleotide transition from Cytosine to Thymine in a β-carbonic anhydrase gene causing an amino acid change from Leucine to Phenylalanine. This resulted in severe reduction in growth and photosynthesis in the mutant. Both the CO2 compensation point and carbon isotope discrimination values of the mutant were significantly increased. Growth of the mutants were stunted when grown under ambient pCO2 but recovered at elevated pCO2. Further bioinformatics analyses revealed that the mutation has led to functional changes in one of the conserved residues of the protein, situated near the catalytic site. CA transcript accumulation in the mutant was 80% lower, CA protein accumulation 30% lower and CA activity ~98% lower compared to WT. Changes in the abundance of other primary C4 pathway enzymes were observed; accumulation of PEP carboxylase (PEPC) protein was significantly increased and accumulation of Malate Dehydrogenase (MDH) and Malic Enzyme (ME) decreased. The reduction of CA protein activity and abundance in lcr1 restricts the supply of bicarbonate to PEPC limiting C4 photosynthesis and growth. This study establishes Sevir.5G247800 as the major CA allele in Setaria for C4 photosynthesis and provides important insights into the function of CA in C4 photosynthesis that would be required to generate a rice plant with a functional C4 biochemical pathway.


Sign in / Sign up

Export Citation Format

Share Document